
Design and Usage of Transparency
Enhancing Technologies

Alexander Hicks

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Computer Science

University College London

December 6, 2023

2

I, Alexander Hicks, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has been

indicated in the work.

Abstract

As computer systems handle transactions and make decisions about our lives, the

opaqueness of such systems means that when faults occur, the negative impacts of

these faults are often unfairly passed on to the individuals that are subject to these

systems. The aim of this thesis is to show how transparency enhancing technologies,

technical mechanisms that support transparency about a system, can be used to

address these issues. To do this, this thesis provides an analysis of transparency

enhancing technologies from their technical design to their practical usage.

The first part of this thesis systematizes transparency enhancing technologies,

providing an analysis of the threat models and technical mechanisms that can sup-

port transparency.

The second part of this thesis gives an example of a transparency enhancing

technology designed to provide transparency that enables publicly verifiable audits

of the kind of access to data requests that are made by, for example, law enforce-

ment and medical practitioners. This work shows how distributed logs can be used

to provide the infrastructure necessary for such audits and how publicly verifiable

audits in the form of statistics (including multivariable statistics) can be produced

with assurances that the privacy of individuals who relate to the information that is

audited is respected.

The third part of this thesis discusses how transparency enhancing technologies

can allow us to move beyond simply transparency and accountability. Drawing

on the legal literature that has concerned itself with the legal effects of code as it

enforces norms and the legitimacy of such effects, I discuss the ways in which code

can be contested through the use of transparency enhancing technologies, in contrast

Abstract 4

to other kinds of accountability technologies based on compliance, and, because it

is code itself, how transparency enhancing technologies can be legitimate, unlike

other ways of contesting code.

Impact Statement

By showing how transparency enhancing technologies can be designed and imple-

mented, and put to use, this thesis on transparency has the potential to shape how

systems are designed, contested, and how system operators are held accountable for

flaws in the system they operate and the harm that this can produce.

Some of the work in this thesis has been published in reputable academic

venues, and the work that is the basis for Chapter 5 has been recognized by an

award1 determined by a panel spanning academia, industry, and public bodies.

1See https://www.ucl.ac.uk/computer-science/news/2018/jul/
alexander-hicks-wins-ace-csr-pitch-competition

https://www.ucl.ac.uk/computer-science/news/2018/jul/alexander-hicks-wins-ace-csr-pitch-competition
https://www.ucl.ac.uk/computer-science/news/2018/jul/alexander-hicks-wins-ace-csr-pitch-competition

Acknowledgements

First, I must of course thank Steven Murdoch for enabling me to do this thesis, as

well as Wai Yi Feng who first suggested that I apply for this particular position. I am

also grateful for the feedback I received from George Danezis, Sarah Meiklejohn,

and Marie Vasek, as part of my first year viva and transfer viva. Administrative

affairs are an unavoidable frustration these days, but I want to thank Dawn Bai-

ley, Sarah Bentley, and Wendy Richards, who made processes simpler when others

made them complicated.

I also want to thank Mustafa Al-Bassam, Sarah Azouvi, Guy Goren, Lioba

Heimbach, Vasilios Mavroudis, Patrick McCorry, and Sarah Meiklejohn, for being

my co-authors on the papers that were produced over the time it took to complete

this thesis.

Pre-pandemic, it was also possible to get to know UCL colleagues better, by

sharing an office, teaching together, and seeing them outside of work. I was fortu-

nate to share some time with Tristan Caulfield, Lisa Chalaguine, George Kappos,

Mary Maller, Enrico Mariconti, Bristena Oprisanu, Ania Piotrowska, Maria Schett,

Alberto Sonnino, Mark Warner, and Haaroon Yousaf. Sorry if I have forgotten any-

one!

Finally, I want to thank my wife Sarah Azouvi for supporting the completion

of this thesis, I’m looking forward to better times with you.

Contents

1 Introduction 14

1.1 Scope and Organization of The Thesis 15

1.2 Publications Resulting From This Thesis Work 17

1.2.1 Papers used in this thesis 17

1.2.2 Papers not included in this thesis 18

1.3 Work Done in Collaboration . 19

2 Technical Primitives 20

2.1 Cryptographic Hash Functions . 20

2.2 Public Key Cryptography . 21

2.2.1 Public key encryption . 21

2.2.2 Digital Signatures . 22

2.2.3 Zero Knowledge Proofs 22

2.2.4 Public key infrastructure 24

2.3 Transparency Overlays . 24

2.3.1 Merkle trees and verifiable log backed maps 24

2.3.2 Distributed Ledgers . 26

2.4 Inference Control . 27

2.4.1 Differential privacy . 28

2.5 ThreeBallot . 29

3 Related Work 30

3.1 Work related to Chapter 4 . 30

Contents 8

3.2 Work related to Chapter 5 . 30

3.3 Work Related to Chapter 6 . 33

4 Log Based Transparency Enhancing Technologies 34

4.1 Introduction . 34

4.2 A Short Overview of Transparency 35

4.2.1 Transparency matters for computer systems 37

4.2.2 Forms Of Transparency . 39

4.2.3 Criticisms of Transparency 40

4.3 Essential Mechanisms . 42

4.3.1 Logging mechanism . 43

4.3.2 Sanitization mechanism 48

4.3.3 Release and query mechanism 49

4.3.4 External mechanisms . 50

4.4 Transparency and Security . 51

4.4.1 Assets and beneficiaries of transparency 51

4.4.2 Threats based on essential mechanisms 52

4.5 Transparency Infrastructure . 55

4.5.1 Requiring and maintaining transparency 55

4.5.2 Truth . 57

4.6 Balancing Transparency With Privacy 58

4.6.1 Editorial control . 59

4.6.2 Individual evidence . 61

4.7 Case Studies . 62

4.7.1 Certificate Transparency 62

4.7.2 Blockchain based cryptocurrencies 65

4.8 Conclusion . 68

5 VAMS: Transparent Auditing of Access to Data 70

5.1 Introduction . 70

5.1.1 Outline of the Chapter . 72

Contents 9

5.2 Motivating Scenarios . 72

5.2.1 Law-enforcement access to communications data 72

5.2.2 Access to healthcare records 74

5.3 Threat Model and Goals . 75

5.3.1 Threat Model . 77

5.4 Building VAMS . 79

5.4.1 Using Hyperledger Fabric and Trillian as tamper-evident logs 80

5.4.2 Tagging log entries with common identifiers 82

5.4.3 Generating synthetic data and verifying statistics with

MultiBallot . 83

5.5 Operating VAMS . 91

5.5.1 Appending to the log . 91

5.5.2 Querying the log . 92

5.5.3 Publishing and verifying audits 92

5.6 Achieving Transparency and Privacy Goals 93

5.6.1 Goal T 1: log availability 93

5.6.2 Goal T 2: log integrity . 94

5.6.3 Goal T 3: verifiability of inputs to audits 94

5.6.4 Goal T 4: verifiability of published audits 95

5.6.5 Goal T 5: transparency of the system 95

5.6.6 Goal P1: The log itself does not reveal any sensitive infor-

mation . 95

5.6.7 Goal P2: verifying an audit is privacy preserving 95

5.7 Implementation and Performance 103

5.7.1 Evaluating Hyperledger Fabric and Trillian based logs . . . 104

5.7.2 Evaluating the verification of statistics with Multiballot . . . 108

5.8 Deployability . 112

5.9 Conclusion . 113

6 Transparency, Compliance, and Contestability When Code Is Law 115

6.1 Introduction . 115

Contents 10

6.1.1 Outline of the Chapter . 116

6.2 Preventing Misbehaviour Through Legal Processes and Security

Mechanisms . 117

6.2.1 Norms and misbehaviour 117

6.2.2 Law based disincentivization and punishment of misbehaviour119

6.2.3 Security against threats and a posteriori security 120

6.2.4 Economic considerations 121

6.2.5 The interaction between security mechanisms and legal

mechanisms . 122

6.3 Accountability Through The Lens of Code Is Law and Digisprudence124

6.3.1 Code is Law and Digisprudence 124

6.3.2 Digisprudence and Accountability 125

6.4 From Accountability to Contestability 128

6.5 Compliance and Transparency Based Auditing 131

6.5.1 Verification and compliance based auditing 131

6.5.2 Transparency Enhancing Technologies 133

6.5.3 Examples of the usefulness of system transparency in court

cases . 135

6.6 Practical Considerations . 138

6.6.1 Electronic evidence . 138

6.6.2 Balancing transparency and privacy 138

6.6.3 A system in one place, transparency in another 139

6.7 Conclusion . 140

7 Conclusion 142

7.1 Open Problems . 144

7.2 Closing thoughts . 148

Bibliography 149

List of Figures

2.1 A Merkle tree with four leaf nodes. 25

2.2 A chain of signed tree roots over three epochs. The first epoch is

initialized with a seed as there is no previous root hash. 26

4.1 Summary of essential mechanisms for transparency enhancing tech-

nologies (logging, sanitization, release and query, external) and

their place in a transparency process. 43

5.1 The parties in VAMS and their functionalities. The optional data

broker would act as a user. 75

5.2 Example transformation of records in D to shares in Dpriv for uni-

variate and multivariate statistics. In the univariate case, the record

is split into individual elements. In the multivariate case, the record

is used to generate shares with the same number of elements that

are then split from each other. 84

5.3 The three stages in the operation of VAMS. Red, blue and green

boxes indicate information available to auditors, users, and the pub-

lic. Similarly, red, blue and green arrows indicate operations that

require being an auditor, a user, or anybody. 91

5.4 The HLF-based implementation. 104

5.5 The Trillian-based implementation. 105

5.6 Throughput of both logs for different batch sizes. 107

5.7 Percent error for the support over two elements as rule occurrences

vary in the case 3, 5, 7 and 9Ballot. 111

List of Figures 12

5.8 Percent error for elements that appear with varying frequency in

datasets with different number of users, using 3Ballot. 112

5.9 Percent error for element sets of varying size that have the same

support, using 3Ballot. 113

List of Tables

4.1 Threats for transparency enhancing technologies based on editorial

control (EC) and individual evidence (IE). 54

5.1 The parties in the system, the functions they perform and their ma-

licious behaviour. 76

5.2 Transparency and privacy goals that address the malicious be-

haviours defined in our threat model. 77

5.3 Upper bounds on the number of elements in 3Ballot and 5Ballot

shares such that the probability of a successful reconstruction is less

than 0.01%. The numbers in brackets next to the scheme indicate

the number of shares known to the adversary and the numbers in

brackets next to the number of elements indicate the probability of

success. 99

5.4 Values for the expected privacy loss parameters ζ and eζ for dif-

ferent sizes of D. We take values of e equal to the safe number of

elements against reconstruction attacks taken from Table 5.3. 103

5.5 Micro-benchmarks of basic operations for the Hyperledger Fabric

and Trillian based implementations. The maximal throughput val-

ues are given for a batch size of 1 in the HLF case and a batch size

of 300 in the Trillian case. 106

5.6 Summary of supported (full circles) and partially supported (half-

circles) features of the HLF and Trillian based logs. 109

Chapter 1

Introduction

Computational systems are ubiquitous in nearly all aspects of our lives. They handle

financial transactions, communications, exchange data about us and for us, and are

used to make or assist in making decisions that impact our lives.

As is the case with any system, things do not always go well. Computational

systems can be used in a setting for which they were not designed or evaluated.

Their specification can be flawed, ignoring edge cases or imposing faulty logic that

discriminates against certain users. The programs they execute can be affected by

bugs resulting from implementation errors.

Despite the fact that faults are practically inevitable, their impact is typically

restricted to the individuals directly affected by the faults in the system, rather than

to those that are responsible for these faults, who may avoid liability by relying

on opaque systems and the presumption that the outputs of computational systems

are correct. Moreover, because computational systems are primarily designed and

operated by a small minority of states and private companies with little diversity

(i.e., rich white men), their negative impacts typically fall upon marginalized people

who do not have much power to contest the outputs of the systems they are subject

to, sometimes without consent.

There are numerous examples of harms that can result from this, due both to

legacy systems that have been computerized (e.g., surveillance, data sharing, pay-

ment systems, . . .) and new technology that has allowed these systems to operate

at a greater scale (e.g., algorithmic decision making systems). A payment system

1.1. Scope and Organization of The Thesis 15

can allow fraud to happen at the cost of the victim rather than the system operator,

and ban legitimate users because of errors or deliberate over moderation. Law en-

forcement can access increasing amounts of sensitive data with limited oversight.

Companies can obtain highly sensitive data without the consent of the people whose

medical data they obtain and collate data from an increasing amount of sources.

This thesis evaluates the hypothesis that part of the solution to these problems

is to make computational systems more transparent, based on the following intu-

ition. The harms we have introduced above are the result of flaws in the system,

whether that be the design, implementation, or operation of the system. The fact

that these flaws affect individuals that have no (or limited) privileges over the sys-

tem creates a classic moral hazard issue. One way of resolving this situation is to

make it easier for those that may be victims of these errors in the system is to allow

them to better evaluate the system as a whole, whether there has been an error that

affected them, and to be able to contest the system and challenge the effects on the

flaw that has affected them.

Thus, this thesis is also about power, because these issues revolve around the

power that systems have over people that are subject to these systems, and therefore,

the disproportionate power that those with privileged access to these systems have

over those who do not. Because of the economic structure that determines how

and who builds the system we are subject to, this power imbalance reflects the

power imbalances that exist throughout society. Research in information security

has always dealt with issues of power over a system, typically by ensuring privilege

over a system (e.g., through access control mechanisms). This thesis considers the

opposite approach.

1.1 Scope and Organization of The Thesis

Transparency is a wide-ranging subject so the scope of this thesis is necessarily re-

stricted to specific forms of transparency, specifically transparency enhancing tech-

nologies that are based on distributed or decentralized cryptographic logs. The focus

is, therefore, the analysis and design of technical mechanisms, in particular logging

1.1. Scope and Organization of The Thesis 16

mechanisms and privacy mechanisms, which can be used to support transparency,

and how transparency can be put to use to contest systems and hold system operators

accountable.

Chapter 2 introduces the primitives discussed and used in this thesis, while

Chapter 3 outlines work that is related to the content of this thesis.

Chapter 4 presents a systematization of transparency enhancing technologies

from a security point of view. This chapter systematizes log based transparency

enhancing technologies. Based on established work on transparency from multi-

ple disciplines we outline the purpose, usefulness, and pitfalls of transparency. We

outline the mechanisms that allow log based transparency enhancing technologies

to be implemented, in particular logging mechanisms, sanitization mechanisms and

the trade-offs with privacy, data release and query mechanisms, and how trans-

parency relates to the external mechanisms that can provide the ability to contest a

system and hold system operators accountable. We illustrate the role these mech-

anisms play with two case studies, Certificate Transparency and cryptocurrencies,

and show the role that transparency plays in their function as well as the issues these

systems face in delivering transparency.

In Chapter 5 we propose VAMS, a system that enables transparency for audits

of access to data requests without compromising the privacy of parties in the system.

VAMS supports audits on an aggregate level and an individual level, by relying

on three mechanisms. A tamper-evident log provides integrity for the log entries

that are audited. A tagging scheme allows users to query log entries that relate

to them, without allowing others to do so. MultiBallot, a novel extension of the

ThreeBallot voting scheme, is used to generate a synthetic dataset that can be used

to publicly verify published statistics with a low expected privacy loss. We evaluate

two implementations of VAMS, and show that both the log and the ability to verify

published statistics are practical for realistic use cases such as access to healthcare

records and law enforcement access to communications records.

Chapter 6 branches out from a strict security point of view and addresses the

role that transparency enhancing technologies can play in situations, such as legal

1.2. Publications Resulting From This Thesis Work 17

disputes, where it is necessary to contest the outputs of a system to which one is

subject. Both technical security mechanisms and legal processes serve as mech-

anisms to deal with misbehaviour according to a set of norms. While they share

general similarities, there are also clear differences in how they are defined, act,

and the effect they have on subjects. This chapter considers the similarities and dif-

ferences between both types of mechanisms as ways of dealing with misbehaviour,

and where they interact with each other.

Taking into consideration the idea of code as law, we discuss accountability

mechanisms for code, and how they must relate to both security principles and le-

gal principles. In particular, we identify the ability to contest norms enforced by

code as an important part of accountability in this context. Based on this analysis,

we make the case for transparency enhancing technologies as security mechanisms

that can support legal processes, in contrast to other types of accountability mecha-

nisms for code. We illustrate this through two examples based on recent court cases

that involved Post Office in the United Kingdom and Uber in the Netherlands, and

discuss some practical considerations.

Finally, Chapter 7 summarizes and discusses the results presented in this the-

sis, outlines directions for future work, and ends with final thoughts transparency

enhancing technologies.

1.2 Publications Resulting From This Thesis Work
Several papers have been produced over the course of working on this thesis. Some

of these papers form the basis for Chapters 4, 5, and 6, while others are not included

in this thesis because they are not directly related to the topic we explore here.

1.2.1 Papers used in this thesis

• Alexander Hicks, Log Based Transparency Enhancing Technologies, avail-

able as a preprint on arXiv [1], is used as the basis of Chapter 4.

• Alexander Hicks, Vasilios Mavroudis, Mustafa Al-Bassam, Sarah Meikle-

john, Steven J. Murdoch. VAMS: Transparency for Audits of Access to Data,

available as a preprint on arXiv [2], is used as the basis for Chapter 5.

1.2. Publications Resulting From This Thesis Work 18

• Alexander Hicks, Transparency, Compliance, And Contestability When Code

Is(n’t) Law [3], which appeared at the New Security Paradigms Workshop

(NSPW) in 2022, is the basis for Chapter 6.

1.2.2 Papers not included in this thesis

• Sarah Azouvi, Guy Goren, Lioba Heimbach, Alexander Hicks. Base Fee

Manipulation In Ethereum’s EIP-1559 Transaction Fee Mechanism, which

will appear at the International Symposium on Distributed Computing in 2023

and is available on arXiv as a preprint [4]. This paper provides an analysis of

the base fee in Ethereum’s EIP1599 transaction fee mechanism, showing that

there exists a rational deviation from the honest mining strategy to optimize

revenue from the base fee by lowering it by publishing empty blocks.

• Sarah Azouvi, Alexander Hicks. Decentralisation Conscious Players And

System Reliability, which appeared at the Financial Cryptography and Data

Security conference in 2022 [5]. This paper presents a game theoretic model

of decentralized systems as public goods and examines the role of decentral-

ization conscious players; that is, players who prioritize some level of decen-

tralization in the contributions to the system, in maintaining decentralization.

• Sarah Azouvi, Alexander Hicks. Tools for Game Theoretic Models of Secu-

rity for Cryptocurrencies, which appeared at the Cryptoeconomic Systems

conference in 2020 [6]. The paper systematizes existing work on algorith-

mic mechanism design and game-theoretic models of cryptographic and dis-

tributed systems security in the context of cryptocurrencies.

• Alexander Hicks, Steven J. Murdoch. Transparency Enhancing Technologies

to Make Security Protocols Work for Humans, which appeared at the Security

Protocols workshop in 2019 [7]. This paper looks at how the dispute resolu-

tion process around computer systems, such as the Post Office disputes, could

be improved through the use of transparency enhancing technologies.

• Sarah Azouvi, Alexander Hicks, Steven Murdoch. Incentives in Security Pro-

1.3. Work Done in Collaboration 19

tocols, which appeared at the Security Protocols workshop in 2018 [8]. The

paper discusses the still undervalued role that incentives play in the real world

security of protocols, based on examples from payment systems (EMV),

cryptocurrencies, and anonymity networks, and how this could be addressed

through the use of security models that explicitly take these into account.

• Patrick McCorry, Alexander Hicks, Sarah Meiklejohn. Smart Contracts for

Bribing Miners, which appeared at the Bitcoin workshop in 2018 [9]. The

paper introduces smart contracts that can be used by a malicious actor to

bribe miners of a cryptocurrency to manipulate the underlying blockchain as

well as attack another cryptocurrency, without the miners having to trust the

briber.

1.3 Work Done in Collaboration
As a result of being based on a collaborative paper, Chapter 5 includes work that was

done with other researchers. Steven Murdoch and Sarah Meiklejohn suggested the

law enforcement and healthcare use cases, respectively, and provided some guid-

ance throughout the completion of the paper. Vasilios Mavroudis first suggested

the use of ThreeBallot which he and I then reworked to produce MultiBallot, with

Vasilios Mavroudis focusing on the implementation of the scheme and the litera-

ture on verifiable statistics covered in Chapter 3, while I worked on the theorems

that determined the bounds on the expected privacy loss and ballot reconstruction

attacks. The Trillian based implementation of VAMS was done by Mustafa Al-

Bassam, while I did the Hyperledger Fabric based implementation. The pseudony-

mous identifier scheme was designed in a meeting between Sarah Meiklejohn and

myself.

The remaining chapters are solely the result of my work.

Chapter 2

Technical Primitives

This chapter introduces the technical primitives that we rely on or discuss through-

out this thesis. Because these are well-established primitives and this thesis does not

include work on these primitives, we choose to omit the most precise mathematical

definitions in favour of readability for non-cryptographers. These can be found in

freely available textbooks such as the draft of Boneh and Shoup’s applied cryptog-

raphy textbook [10] and Dwork and Roth’s book on Differential Privacy [11].

2.1 Cryptographic Hash Functions
A hash function h maps an arbitrarily sized input to a fixed length output that is

referred to as the hash value (alternatively, the message digest) of that input.

In this thesis, we use the term hash function to refer exclusively to crypto-

graphic hash functions, which are hash functions for which three security properties

hold.

1. First pre-image resistance, which requires that given h(x) an adversary cannot

determine x with non-negligible probability.

2. Second pre-image resistance, which requires that given an input x an adver-

sary cannot efficiently find another input y such that h(x) = h(y).

3. Collision resistance, which requires that an adversary cannot efficiently find

two inputs x and y such that h(x) = h(y). (This implies second pre-image

resistance.)

2.2. Public Key Cryptography 21

The only case in which we refer to a specific hash function in this thesis is in

Chapter 5 where we use the SHA256 hash function in the implementation of VAMS,

which is standardized by NIST [12].

2.2 Public Key Cryptography
Public key cryptography is a set of cryptographic mechanisms that allow users to

have a public key, by which they can be known to other users, as well as a private

key that only they know and must keep secret, therefore removing the need for a pre-

established shared symmetric key. (Public key cryptography is sometimes used as a

way to establish a symmetric key.) In this thesis the systems we discuss require the

use of public key encryption, digital signatures, and in some cases, zero-knowledge

proofs, as well as public key infrastructures.

2.2.1 Public key encryption

Public key encryption allows parties to exchange encrypted messages without the

need for a shared key.

More formally, a public key encryption scheme is a triplet of three algorithms.

1. A probabilistic key generation algorithm G that takes no input and outputs a

pair (pk,sk), where sk is called a secret key (sometimes simply private key)

and pk is called a public key.

2. A probabilistic encryption algorithm E that taking as input a message m and

a public key pk produces ciphertext c.

3. A deterministic decryption algorithm D that takes as input a secret key sk, a

ciphertext c, and returns the message m that was encrypted using the corre-

sponding public key, or a reject value distinct from all possible messages.

For a public key encryption scheme to be secure, it must be the case that an

adversary that eavesdrops on encrypted communications between parties that en-

crypted their messages with a public key encryption scheme cannot learn anything

about the messages that are exchanged.

2.2. Public Key Cryptography 22

2.2.2 Digital Signatures

Cryptographic digital signatures allow a party to sign a message with their private

key and anyone with knowledge of that party’s corresponding public key to verify

the signature on that message and, therefore, authenticate the party that signed the

message.

More formally, a digital signature scheme is a triplet of three algorithms.

1. A probabilistic key generation algorithm G that takes no input and outputs a

pair (pk,sk), where sk is called a secret signing key (sometimes simply private

key) and pk is called a public verification key (sometimes simply public key).

2. A probabilistic signing algorithm S that taking as input the secret key sk and

a message m produces a signature σ .

3. A deterministic verification algorithm V that takes as input a public key pk, a

message m, and a signature σ then outputs accept if the signature is valid (i.e.,

generated for the message m using V with the corresponding secret signing

key) or re ject.

The important security property for digital signature schemes is that it should

be impossible for an adversary to forge a signature on a message. This also means

that given a signature on a message, the party that signed the message cannot later

claim that the message did not originate from them unless they argue that their secret

signing key was compromised. This property is referred to as non-repudiation.

In the UK, a recent project by the Law Commission (referring to cryptographic

digital signatures as electronic signatures) confirmed that “an electronic signature

is admissible in evidence in legal proceedings” and “is admissible, for example,

to prove or disprove the identity of a signatory and/or the signatory’s intention to

authenticate the document” [13].

2.2.3 Zero Knowledge Proofs

Zero-knowledge proofs are cryptographic tools that give a prover the ability to prove

a statement without revealing anything but the truth of that statement. Introduced

2.2. Public Key Cryptography 23

by Goldwasser et al. [14], zero-knowledge proof techniques are popular because of

the optimal trade-offs in confidentiality and utility that they seem to offer.

Confidentiality levels are of course very high given that nothing but the truth of

the statement is revealed, and high levels of utility are assured by the completeness

and soundness of the proof, which guarantees that if the statement is true then it is

easy to verify that it is true and if the statement is false it is impossible to convince

an honest person that it is true.

An important result for zero-knowledge proofs due to Goldreich et al. [15]

is that any statement in a language in NP (i.e., a decision problem whose pos-

itive answers have proofs verifiable in polynomial time) can be proven in zero-

knowledge. This implies that for a protocol that does something in a non-privacy-

preserving way, it may be replaced by a zero-knowledge protocol that will be

privacy-preserving.

The work of Eskandarian et al. [16] that proposes a way for certificate trans-

parency (a system that logs SSL certificates) to allow users to report invalid cer-

tificates without compromising privacy (i.e., revealing browsing behaviour) is an

example of this. Another example is the work of Frankle et al. [17] and Park and

Goldwasser [18] that proposes using zero-knowledge proofs to show that confi-

dential legal proceedings followed the correct legal procedures. More generally,

zero-knowledge proofs offer the ability to efficiently verify information that may be

suitable for accountability in legal settings [19, 20].

A zero-knowledge proof systems is said to be transparent if it does not require

a trusted setup. Some zero-knowledge proof systems are not transparent such as the

zk-SNARK construction originally used by the cryptocurrency Zcash, meaning that

if the setup ceremony was compromised (despite extensive documentation [21])

then it would have been possible for the perpetrators to forge proofs and effec-

tively generate additional units of Zcash in an undetectable manner. More recently,

however, several ways of avoiding trusted setups without the need for complicated

ceremonies have been introduced [22, 23, 24, 25, 26, 27, 28].

2.3. Transparency Overlays 24

2.2.4 Public key infrastructure

The use of public key cryptography can entail the need for a public key infrastruc-

ture, which manages how identities are bound to public keys. In practice, this means

that there are certificate authorities, designated trusted third parties, that verify the

identity of a user and their possession of a set of cryptographic keys and produce a

signed certificate (typically in the X.509 standard) that publicly associates the user

with their public key.

2.3 Transparency Overlays
Following Chase and Meiklejohn [29], we use the term transparency overlay to

broadly refer to any kind of distributed log that guarantees tamper evidence using

cryptographic mechanisms. The term auditable data structures is sometimes also

used, for example by Goodrich et al. [30], as well as the term authenticated data

structures [31, 32].

By tamper evidence, we mean that any alteration to information on the log is

detectable because changes to the log are recorded and their integrity is guaranteed

by cryptographic mechanisms, and that the party responsible for tampering with

the log can be held accountable because they will have signed the operation that

resulted in the change to the log.

In this thesis, we rely on two instantiations of transparency overlays to im-

plement VAMS in Chapter 5, Trillian which is based on Merkle trees and verifi-

able log-backed maps, and Hyperledger Fabric which is a permissioned distributed

ledger with an underlying blockchain. However, we also refer to transparency over-

lays in general in other chapters.

2.3.1 Merkle trees and verifiable log backed maps

A Merkle tree, based on the work of Merkle [33], is a hash-based binary tree struc-

ture illustrated in Figure 2.1.

Every leaf in the tree corresponds to some data, and every non-leaf node up

to the root node is the hash of its two child nodes. Given a hash function h, node i

stores the hash hi = h(hle f t(i)∥hright(i)) based on its left and right children. Changing

2.3. Transparency Overlays 25

Figure 2.1: A Merkle tree with four leaf nodes.

a piece of data (i.e., a leaf) therefore changes every node of the tree’s branch from

the leaf to the root.

Assuming that the underlying hash function is collision resistant, Merkle trees

can provide an efficient way of verifying the integrity of data that has been encoded

in the tree (i.e., the value of a leaf) because one only needs to know the subset of

nodes that, together with the leaf, are needed to reconstruct the root hash and verify

that it matches the root hash of the tree. For a Merkle tree with n leaves, this Merkle

proof is of size O(log(n)).

Looking at Figure 2.1, for example, given h2 and h6 we can verify that the

value of lea f 1 is included in the tree with root hash h(h5∥h6).

When a Merkle tree is updated, it is possible for the server hosting the Merkle

tree to maintain a link with the previous Merkle tree by committing to a chain of

signed tree roots where each new signed tree root references the hash of the previous

signed tree root, as illustrated in Figure 2.2.

To check that two successive trees are consistent with each other, such that

every value included in the past tree is included in the new tree, one needs to show

that the present tree contains the past tree and that given the past tree, adding the

leaves that have been added would result in the new tree.

2.3. Transparency Overlays 26

Figure 2.2: A chain of signed tree roots over three epochs. The first epoch is initialized
with a seed as there is no previous root hash.

Looking again at Figure 2.1, if we take the past tree as being the tree containing

only leaves 1, 2, and 3, and the new tree to result from the addition of leaf 4, then we

can show the following given h5 and h3 from the past tree. The new tree contains the

past tree because we can recompute the previous root hash h(h5∥h3). Adding lea f 4

to the past tree does result in the new root hash h(h5∥h(h3∥h4)) where h(h3∥h4))

has replaced h3 in the past root hash.

2.3.2 Distributed Ledgers

Introduced in the context of Bitcoin [34], blockchains have now been used more

widely for cryptocurrencies and other applications built on top of cryptocurrencies

like Ethereum [35] that support smart contracts which can be used to execute arbi-

trary code.

A blockchain is a chain of blocks that are cryptographically linked to each

other by having each block include a reference to the hash of the previous block.

This means that it is not possible to modify past blocks in the blockchain as the

hash values that link each block together will no longer be consistent. This makes

the blockchain append-only, while consensus rules ensure that all nodes extend the

same blockchain.

Blockchains use Merkle trees to store data (e.g., transactions) within each

block, thus verifying the inclusion of data in a blockchain amounts to verifying

its inclusion in a Merkle tree in a block. This makes systems both on Merkle trees

or blockchains similar in the security guarantees they provide.

The important differences between the use of a blockchain rather than Merkle

2.4. Inference Control 27

trees are, therefore, the use of a consensus protocol rather than gossiping to ensure

consistency (i.e., a global state agreed on by all nodes), and the ability to record the

execution of smart contracts rather than just store data.

Blockchains can also be permissioned or permissionless, which determines the

kind of consensus protocol that can be used.

Permissionless blockchains (e.g., Bitcoin) are open to anyone willing to par-

ticipate (i.e., ay the cost of participating) in the system. This requires mechanisms

that defend against Sybil attacks, which consist of an adversary generating many

fake users controlled by the adversary to take control of the system. Sybil resis-

tance mechanisms such as Proof-of-Work, Proof-of-Stake, Proof-of-Space, and so

on, rely on users to commit some amount of a finite, difficult enough to obtain

resources to perform actions in the system such as validating transactions. Per-

missionless blockchains also require consensus protocols that can incorporate these

sybil resistance mechanisms scale to hundreds or thousands of nodes [36].

Permissioned blockchains alleviate the need for potentially wasteful sybil re-

sistance mechanisms such as proof-of-work by requiring participants in the system

to be known and agreed upon, making participation exclusive. This makes it possi-

ble to rely on more traditional and efficient consensus protocols.

2.4 Inference Control

Inference control refers to the set of mechanisms designed to limit how much can

be inferred about an individual (or group) from data without sacrificing the utility of

the data in learning about a population. Generally speaking, if data is released for a

purpose, learning anything more from the data than what is intended by its release

is a bad outcome. Although such concerns have existed since at least the seven-

ties [37], database reconstruction and private attribute inference attacks continue to

be shown to be practical [38, 39, 40, 41, 42, 43, 44].

A variety of approaches have been tried to deal with this, including statisti-

cal disclosure control mechanisms such as k-anonymity [45], l-diversity [46], t-

closeness [47] and ρ-uncertainty [48], which do not achieve acceptable trade-offs

2.4. Inference Control 28

between privacy and utility [49].

2.4.1 Differential privacy

Introduced by Dwork et al. [50], differential privacy quantifies the impact that a

single point in a dataset has on the distribution of the output of a randomized mech-

anism. Thus, it is a definition that applies to mechanisms, rather than data, and guar-

antees that the privacy loss associated with participating in (for example) a study is

bounded by a known quantity without making assumptions about an adversary’s

knowledge. Definition 1 formally expresses this.

Definition 1 ((ε,δ)-Differential Privacy [11]). A randomized algorithm M with

domain N|χ| is (ε,δ)-differentially private if for all S ⊆ Range(M) and for all

x,y ∈ N|χ| such that ∥x− y∥ ≤ 1:

Pr[M(x) ∈ S]≤ exp(ε)Pr[M(x) ∈ S]+δ . (2.4.1)

This definition has several advantages. It is flexible, in the sense that the pa-

rameters ε and δ can be tuned in order to balance trade-offs between utility and

privacy.

It composes in a simple way with itself, so that the composition of two differ-

ential private mechanisms produces another differentially private mechanism, albeit

with greater values of ε and δ .

It also does not depend on assumptions about an adversary’s background

knowledge, unlike previous attempts at privacy-preserving mechanisms with similar

goals such as k-anonymity and its variants [45, 51, 46]

There are, however, some limitations to differential privacy. It also does not as-

sume anything about an adversary’s prior knowledge of the data, although assump-

tions about the way data is generated do matter if any utility is to be preserved [52].

It also does not protect very well against inference [53]

Several expository and systematizations papers on differential privacy and its

applications exist [11, 54, 55, 56, 57, 58]. Differential privacy has become an ex-

tremely popular primitive, both in academic research where it has led to a large

2.5. ThreeBallot 29

body of work but also in its real-world applications. Google [59], Apple [60],

and Microsoft [61], are examples of large tech companies that have deployed dif-

ferential privacy. Excluding large tech companies, the 2020 census in the United

States has also relied on differential privacy [62, 63, 64], following its use for On-

TheMap [65, 66]. From a legal and regulatory perspective, differential privacy has

also been studied in relation to privacy laws and regulations, such as the European

GDPR requirements [67, 68], showing that differential privacy may also be a suit-

able privacy mechanism from that perspective.

2.5 ThreeBallot
ThreeBallot [69, 70] is a paper-based voting scheme proposed by Rivest for end-

to-end auditable elections. Voters are given three blank ballots arranged as three

columns, each row corresponding to a single candidate. Marking two of the three

columns in a row is a vote for a candidate, while marking only one of the columns

is a non-vote. In the standard version of ThreeBallot, each row must have either one

or two marks and blank rows or rows with three marks are not allowed.

After the voting process, the collection of all ballots is placed on a public

bulletin board, so that anyone can verify the outcome of the elections and check if

their vote was represented correctly (while keeping their vote private).

The scheme’s security properties (i.e., auditability and vote privacy) have been

extensively studied in various works [71, 70, 72, 73, 74, 75, 76]. From all the attacks

introduced in the literature, the reconstruction and pattern-based attacks apply to

our use case in Chapter 5. Henry et al. [73] published a thorough analysis of these

attacks against two-candidate races, extending previous work by Strauss [75]. These

works provide a lower bound for security as a function of the ballot size (number of

binary choices).

In Chapter 5, we rework ThreeBallot, which we call MultiBallot as we gener-

alize the scheme to any odd number of ballots, as a primitive to generate a privacy-

preserving synthetic dataset that can be used to publicly verify the statistics com-

puted on the original dataset.

Chapter 3

Related Work

3.1 Work related to Chapter 4
A number of past surveys related to transparency enhancing technologies exist.

Murmann and Fischer-Hübner [77] focus on the usability of transparency enhanc-

ing technologies. Hedbom [78], Janic et al. [79], and Zimmermann [80] focus on

transparency tools that can be used to help users control or verify their privacy on-

line. Spagnuelo et al. [81, 82] look at transparency enhancing technologies in the

context of providing and complying with the transparency required by the GDPR.

In contrast to these papers, our focus is not specifically on existing tools (al-

though we survey some and consider two use cases), but more generally on how to

design and build transparency enhancing technologies based on cryptographic logs

under realistic threat models that consider issues of editorial control and access to

individual evidence.

3.2 Work related to Chapter 5
The work closest to ours is due to Frankle et al. [17], who propose a system that

allows accountability of secret legal processes using zero-knowledge proofs and

aggregate statistics computed through a multi-party computation (MPC) between

courts. Previously, Goldwasser and Park [18] had also proposed using append-only

ledgers and zero-knowledge proofs in the context of actions related to secret laws

under the U.S. Foreign Intelligence Surveillance Act.

This approach provides less transparency than ours as they do not support in-

3.2. Work related to Chapter 5 31

dividual transparency, only aggregate statistics, thereby reducing the potential for

users to contest outcomes [3]. While the outputs of zero-knowledge proofs and

MPC can be checked for correctness, the integrity of inputs (i.e., the integrity of the

data used in audits) cannot be verified. Because the inputs can be manipulated, they

must assume that judges (which are closest to the auditors of our context) are not

malicious and would not publish an inaccurate report, making their threat model

weaker than ours. Their proposed systems are also specific to a targeted use case

where all parties could coordinate to perform the required multiparty computation,

while our approach is more generally applicable as parties do not require as much

coordination aside from the initial request for data (which is unavoidable).

Work by Panwar et al. [83] also addresses the problem of auditing surveillance

orders, but differs from ours to a greater extent as it envisions an enforcer that

verifies the interactions between agents and data providers, which are recorded on a

blockchain using zero knowledge proofs, but does not support verifiable statistics.

Tamper evident logs have also been used in other auditability focused work.

Bates et al. [84] look at accountable logs of wiretapping in the context of equip-

ment implementing requirements of the US Communications Assistance for Law

Enforcement Act (CALEA). This system permits simple counting queries, whereas

VAMS allows broader analysis. CONIKS [85] deals with the specific case of key

transparency, allowing users to monitor their key bindings, and does not deal with

other problems that we address, in particular public audits.

In terms of privacy preserving statistics, techniques such as k-anonymity [45],

l-diversity [46], t-closeness [47] and ρ-uncertainty [48] have been proposed. As

discussed by Domingo-Ferrer and Torra [49], however, these techniques provide

privacy only when the utility of the dataset is significantly reduced, whereas our

solution enables accurate statistics.

Another line of work that attempts to address this limitation is privacy-

preserving association rule mining [86] (we introduce association rule mining in

Section 5.5). Such techniques generate randomized or perturbed datasets that pro-

tect the privacy of users while preserving some of the associations between the

3.2. Work related to Chapter 5 32

variables that are of interest. Originally, privacy-preserving association rule min-

ing was performed through uniform randomization of the dataset based on a public

factor. As shown by Evfimievski et al. [87] this naive approach does not protect

the users’ privacy effectively. They instead proposed randomization operators[87]

that were also proven ineffective and require an initial dataset of at least one mil-

lion records [88]. Zhang et al. proposed a scheme that considers the existing

association rules when perturbing the data and as a result provides better privacy

bounds [88]. Unfortunately, this scheme has limited applicability as it severely dis-

torts the strength of the association rules, overestimating strong relationships and

under-representing less frequent ones. Overall, the weak privacy guarantees and the

poor accuracy achieved by those schemes make them unsuitable for a system like

VAMS.

A more promising line of work is based on differential privacy [50]. Such

schemes have been studied extensively in the past years and have been proven to

be secure in a variety of settings [89]. However, they still impose trade-offs be-

tween privacy and utility [90], as well as one-shot and continuous observation [91].

Achieving a meaningful privacy parameter can also be hard in practice [92], par-

ticularly when the aim is to provide a general solution like ours. This problem is

tackled by Chen et al. [93], who take into consideration the underlying dataset to

provide stronger privacy guarantees and increased utility.

None of these solutions provide verifiability, however, so the public cannot

easily verify the integrity of the published data or statistics. In fact, the analyst who

adjusts the noise term may accidentally or intentionally sample from distributions

that drastically skew the statistics computed [94]. Narayan et al. [94] solve this

problem with a scheme that uses a subset of Fuzz [95] to generate publicly verifi-

able validity proofs. Unfortunately, VerDP has limited expressiveness and severely

constrains access to the dataset. More specifically, once the privacy budget of a par-

ticular dataset gets depleted, no further queries or analysis can be conducted. This

may exclude researchers from using the data and prevent the application of novel

analysis techniques on older, depleted datasets. It could also allow a malicious party

3.3. Work Related to Chapter 6 33

to intentionally deplete the privacy budget. In comparison, we allow the data to be

used any number of times and without constraints.

3.3 Work Related to Chapter 6
There is a vast amount of work concerned with accountability, much of which is

covered in the systematization of the topic by Wieringa [96] that is based on Boven’s

framework for accountability [97]. Transparency itself is also the focus of work

across many disciplines. The book by Taylor and Kelsey provides a useful overview

of applications of transparency in various contexts across the world, how it can

succeed and how it can have counterproductive results if badly implemented and

vulnerable to either unverifiable information or an inability to act on information

(i.e., missing contestability) [98].

Specifically related to this paper, there is work that focuses on security models

for accountability [99, 100, 99], interactions between security mechanisms that can

provide assurances and the legal system have also been studied previously [101,

102], as well as the production of evidence by systems [103].

Our work differs from this existing body of work by considering how account-

ability mechanisms, in particular transparency enhancing technologies, can be used

to contest norms enforced by code when designed to support existing processes

such as legal disputes, rather than the predominant focus on obtaining assurances of

compliance with a norm.

More recent work does address contestability, such as the work of Lyons et

al. [104] who, like us, consider the ability to contest via legal processes but focus

on higher level design principles. Our work is complementary to theirs, approaching

contestability from the perspective of digisprudence and discussing specific techni-

cal security mechanisms.

Chapter 4

Log Based Transparency Enhancing

Technologies

4.1 Introduction

As systems perform operations and assist decisions that can have an important im-

pact on a person’s life, transparency is often suggested as a way of identifying flaws

in a system, enabling accountability, and making it more likely that flaws are recti-

fied and their impacts mitigated.

Transparency, however, is a complex property to require from a system. It does

not entail any specific meaning or way of implementing transparency, particularly

in systems deployed in an environment that is adversarial to the accountability that

transparency should enable. What information is revealed? In what form? By who?

To whom? How? As a result, transparency does not always work as desired and is

sometimes even counterproductive [98].

In this chapter, we consider achieving transparency based on logging mecha-

nisms. This involves technical considerations, such as logging, sanitising, releasing

and querying data, as well as non-technical external mechanisms that determine

what can be done once transparency is in place. Our aim is to provide a systemati-

zation that brings the relevant aspect of each mechanism into one view of log based

transparency enhancing technologies.

4.2. A Short Overview of Transparency 35

Outline of the chapter

We motivate applying transparency to computer systems and give an overview of

transparency and criticisms of transparency in Section 4.2, before outlining log

based transparency enhancing technologies based on four essential mechanisms in

section 4.3: logging, sanitization, release and query, and external mechanisms.

In Section 4.4 we discuss threats to transparency mapped to the essential mech-

anisms outlined in the previous section and editorial control and individual evi-

dence.

We consider the infrastructure that supports logging in Section 4.5 and the in-

teraction between transparency and privacy in Section 4.6. To illustrate our discus-

sion we provide in Section 4.7 two case studies of transparency systems, Certificate

Transparency and cryptocurrencies.

Methodology

Transparency is a broad topic that many fields have independently studied, not all

of which can be covered here. For work on transparency from other fields, we have,

therefore, focused on work from Law, Philosophy, Business, and Economics, which

provide a basis for thinking about transparency and computer systems.

Because of our focus on log based transparency enhancing technologies and

the security of the mechanisms involved in such systems, we have endeavoured to

find relevant papers from the information security literature by going through pub-

lications at major conferences like IEEE S&P, ACM CCS, NDSS, Usenix Security,

PETS, and ACM FAccT, as well as searching for papers from other smaller confer-

ences, workshops, and journals, including those in adjacent fields (e.g., HCI, STS).

Work that relates to transparency but not directly to log based transparency enhanc-

ing technologies (e.g., work on transparent machine learning) is out of scope and,

therefore, not included.

4.2 A Short Overview of Transparency
Transparency can be defined as “the quality of being done in an open way without

secrets” [105]. Applied to an organization, it can mean that the organization is

4.2. A Short Overview of Transparency 36

“open, public; having the property that theories and practices are publicly visible,

thereby reducing the chance of corruption” [106].

These definitions express the basic intuition that if something is being done

transparently then it cannot be done badly without it being noticeable. As Brandeis

put it, “sunlight is said to be the best of disinfectants” [107].

This should create an incentive to ensure that things are done well if there

is a high likelihood of being held to account, making transparency an enabler of

accountability or other ethical principles (e.g., safety, welfare) [108].

Transparency such as open data practices promoted by both governments [109,

110] and academics [111, 112], lead to the public release of data that is used to

determine policy. Open data practices are also used in scientific research to allow

results to be reproduced, further research to be conducted, and new algorithms to

be benchmarked.

In a more bottom-up manner, freedom of information laws have enabled the

media, NGOs, and the public, to make requests for information that can be used

to hold public authorities to account. Other regulations, such as the GDPR [113]

give individuals the right to request a copy of their personal data that is held by

a controller (Article 15), require that personal data should be “processed [...] in a

transparent manner in relation to individuals” (Article 5), and as general data pro-

cessing principles that “it should be transparent to natural persons that personal data

concerning them are collected, used, consulted or otherwise processed and to what

extent the personal data are or will be processed” and “the principle of transparency

requires that any information and communication relating to the processing of those

personal data be easily accessible and easy to understand, and that clear and plain

language be used” (Recital 39).

Access to data also helps mitigate information asymmetries. The work of Ak-

erlof on information asymmetries in markets [114] has led to security economics

re-framing many security issues (e.g., software security) as problems of informa-

tion asymmetry [115, 116], which can be dealt with by requiring data standards and

disclosures.

4.2. A Short Overview of Transparency 37

This ties into Saltzer and Schroeder’s open design principle [117]. Most se-

curity mechanisms (e.g., cryptographic algorithms) are open, enabling users with

the technical knowledge required to assess a system’s code or specification to deter-

mine whether they want to rely on the system. Beyond the specification and code of

a system, nutrition labels for datasets [118, 119, 120] and models [121], and privacy

labels [122, 123], have been proposed.

4.2.1 Transparency matters for computer systems

Security mechanisms are designed to allow certain properties of systems (or the

data they operate on) to hold; for example, integrity, confidentiality, or availability,

but no system is perfect. However, designs can be flawed, implementations can

suffer from software bugs or faulty hardware, and systems can be misused. Security

Economics tells us that we should not expect perfect security in practice, even when

technical mechanisms appear to be sufficient in principle [116, 115].

Even if we perfected the design of systems, designing and implementing com-

plex systems that are entirely formally verified is currently unrealistic and would

not prevent harms that occur because of a system that, operating as intended, ap-

plies harmful norms [3]. Information is routinely copied, aggregated, and analysed

across networks operated by different parties, rendering strict enforcement mecha-

nisms impractical compared to relying on accountability [124]. Notions of appro-

priate use may depend on the data itself as well as the context – an emergency that

requires immediate access to medical data would render any strict security mecha-

nism preventing this useless [100].

More generally, evaluating strict compliance with norms assumes that there are

reliable norms, despite many systems operating in grey areas [3]. As systems grow

in size, complexity, and scope of applications that impact people’s lives, the ability

to evaluate systems is increasingly important, not only for auditors or regulators but

also for users who may change how they interact with the system [125].

Evaluating systems is not new, and system operators routinely do so internally

but this does not always work to reduce the harm that a faulty system can cause.

There can be issues with how the evaluation is done; for example, because of flawed

4.2. A Short Overview of Transparency 38

mechanisms or metrics. Even if a system operator detects faults in the system it

operates, it still has to address these faults and may not do so if it does not have the

incentive or the capacity (technical or economic) to do so.

Systems are not inherently inscrutable [126], but those to whom harm is caused

cannot necessarily detect or show that the system is at fault, despite being those that

have a greater incentive to do so. Access control mechanisms that regulate rights

over a system tend to favour those who design or commission these access control

mechanisms (e.g., system operators), rather than those subject to the system who

have no ability to access useful information via the system itself.

Privilege over information about the system, such as known error logs,

means that system operators can manipulate disclosure procedures to their advan-

tage [127]. This includes many types of systems, such as accounting systems (e.g.,

Horizon, linked to one of the biggest miscarriage of justice in the UK [128]),

breathalysers (See Bellovin et al. [129]), and newer data processing systems that

result in unfair and harmful outcomes [130, 131].

Transparency enhancing technologies offer a way to not only provide trust-

worthy transparency through the use of security mechanisms but also to scale

transparency. For example, the IPCO, which audits law enforcement requests for

telecommunications data in the UK, perform local inspections of a limited amount

of offices to produce their audit [132]. Transparency enhancing technologies could

allow for larger and more efficient audits of many practices.

Moreover, while transparency can have negative effects on people if they re-

spond to transparency with hiding behaviour, impacting their performance [133],

the opposite could be true for computational systems with secure transparency

mechanisms because the performance of such systems is determined by the code

and infrastructure it runs on, not on whether or not it is being observed. Given two

systems that perform similarly, if transparency is cheap enough to implement and

expensive enough to cheat once implemented (e.g., breaking the logging mecha-

nism’s cryptographic properties), the honest transparent system will be cheaper to

operate than the one that tries to cheat transparency, which should make it more

4.2. A Short Overview of Transparency 39

competitive. (That is unless the system is so broken in the first place that whatever

is revealed by transparency condemns the system.)

Transparency can also be seen as a tool for efficiency. Decentralized systems

are often desired because they do not rely on a central party, but centralized systems

are typically more efficient to operate They can also make more sense logistically,

for systems that either involve sensitive data that cannot be used in an encrypted

form for operational reasons or simply to avoid the burden of coordinating many

(sometimes unaligned) parties. A decentralized transparency enhancing technology,

overlaid on top of a centralized system with a trustworthy interface between both,

can provide a useful compromise between the inherent efficiency and logistical ad-

vantages of the centralized system and the lesser trust required by a decentralized

system.

4.2.2 Forms Of Transparency

Transparency can take numerous forms based on the direction in which information

flows, the type of information that flows, and when it flows.

Directions of transparency are reminiscent of basic access control models (e.g.,

Bell-LaPadula [134] and BIBA [135]), which determine in which direction (up-

wards or downwards) information can be read or written. Unlike many access con-

trol mechanisms, however, transparency requires that information leaves the system

and be accessible by users with no privilege over the system, and restricts the write

access of privileged users over this information.

Concerning the type of information, there can be information about inputs to

a system, processes executed within the system, and outputs of the system, where

different levels of transparency (or data granularity) matter. For example, when

revealing the inputs to a system, the ordering of inputs can also be important as the

ordering of data used to train a model can affect its performance [136].

Timing determines when information is made available. It is uncommon

to have real-time transparency when humans are involved as knowingly being

surveilled can affect behaviour [137]. A computer cannot be aware that its actions

are being logged but a human user of the computer will be, so this can still be a

4.2. A Short Overview of Transparency 40

concern in some cases. Even for entirely computational systems, transparency may

only be useful if there is enough information to obtain an aggregate view of the

system’s performance but systems such as cryptocurrencies offer a live transparent

view of the system.

4.2.3 Criticisms of Transparency

Lack of effectiveness

The assumption that underpins much of the belief in transparency is that it will

lead to accountability, better behaviour, and increased public trust. Criticism of this

assumption is centred around the gap between the dissemination of information and

its usefulness in enabling sanctions on a misbehaving party [138].

Etzioni has argued that there is little evidence that supports the view that trans-

parency is an effective accountability mechanism [139]. The argument is that trans-

parency is no alternative to regulation (it can only be complementary) because

regulations cannot be replaced by offloading the responsibility of demanding and

analysing data to citizens without the time or other resources to handle these tasks.

This is backed up by Ferry and Eckersley, who found that, in the UK, the

replacement of formal audits with requirements for English local authorities to

publish datasets (with little contextual information) weakened accountability [140].

In countries without regulations that implement effective accountability, however,

transparency can be effective at bypassing corrupt official audit processes [140].

The issue is that information being transmitted about a bad outcome does not

prevent it. Moreover, it does not prevent future bad outcomes either as it does not, by

itself, mitigate their possibility. A practical example of this is mandated disclosures

such as nutrition labels, which do not prevent any nutritional harms that, in any

case, are linked to many factors beyond the nutritional value of a food item. The

same is likely to be true with proposals for data and privacy nutrition labels. A label

stating that a dataset has flaws does not prevent anyone from using the dataset and

producing a flawed model trained on that dataset.

Research on the effectiveness of privacy labels has also shown that issues of

judgement and misdirection could render transparency ineffective [141, 142]. De-

4.2. A Short Overview of Transparency 41

velopers themselves are not always well equipped to evaluate the labels they cre-

ate, because privacy is not necessarily their expertise and they may not account for

harms that are unknown to them [143]. If any harm is perceived as originating from

the use of a problematic dataset or privacy-invasive system, a system operator will

not be prevented from deploying such a system and may also rely on nutritional

labels as cover if the process that produces these labels can be influenced.

Yu and Robinson have a similar view on open government technology and data,

arguing that while it may allow the public to contribute in new ways, it does not

create any government accountability [144]. Open government initiatives generally

do not imply any effect on how government works (other than publishing data) so

any faulty process is likely to remain in place. Thus, open data and transparency

may be used as a trojan horse for other political goals [145].

If transparency by itself does not entail accountability, it follows that it also

does not necessarily create trust. Despite greater access to information, for example

in the case of government transparency and freedom of information, trust has not

increased [146, 147, 148, 149]. If transparency only reveals systemic faults, why

trust such a system?

Restricted transparency

Obtaining information that is theoretically available, for example through Freedom

of Information requests, can also be an issue that requires people to develop specific

expertise. In other cases, the release of bulks of information may also obfuscate

important information [150]. Even if a party is honest, the release of information

implied by transparency does not necessarily imply the effective communication

and understanding of that information [147] or that the information that is released

is not chosen purposefully to serve a chosen narrative [151].

These criticisms extend to algorithmic transparency for black box computa-

tional systems [152, 153]. Burrell distinguishes three forms of opacity in the context

of algorithmic systems, opacity as intentional corporate or state secrecy, opacity as

technical illiteracy, and opacity as the way algorithms operate at the scale of appli-

cation [154].

4.3. Essential Mechanisms 42

Rights such as data subject access requests may also not work well in prac-

tice [155]. This highlights the gap between transparency and other properties (e.g.,

fairness and explainability) of a computational system. Knowing the inputs, rules,

and outcomes of a complex system may not be enough to understand its processes.

Thus, while auditing is necessary and possible, auditing decisions that result from

algorithms can still pose a significant challenge [156].

Even systems that are open source are not necessarily more or less secure than

closed systems [157, 158] because there are many steps in between code being

released in open source form and bugs in the code being identified and fixed, such

as having the necessary resources and processes to fix bugs. Again, this highlights

the gap between the availability of information and actions taken based on that

information – in this case, auditing for and fixing vulnerabilities.

Tension with privacy and confidentiality

Another criticism of transparency is that it can cause harm privacy or negatively af-

fect businesses that rely on confidential components in their systems. This is partic-

ularly important for systems that process sensitive data, despite the fact that greater

transparency about the sharing and processing of sensitive data may be desirable.

The potential privacy harms brought on by the release of information are also

used to restrict transparency. Freedom of information requests may be refused if

they involve the release of personal information that would contravene data protec-

tion principles [159, Chapter 36, Part II, Section 40].

Similar situations occur when it comes to challenging systems. For example,

Uber invoked privacy concerns to impede a challenge by Uber drivers seeking to

obtain information about the system that they were subject to [160]. More generally,

unless compelled to, companies are often extremely reluctant to disclose anything

that they can argue falls under commercial confidentiality.

4.3 Essential Mechanisms
This section introduces transparency enhancing technologies based on logging

mechanisms, sanitization mechanisms that process the data into a format suitable

4.3. Essential Mechanisms 43

Figure 4.1: Summary of essential mechanisms for transparency enhancing technologies
(logging, sanitization, release and query, external) and their place in a trans-
parency process.

for release, release and query mechanisms, and external mechanisms to make use

of transparency. Figure 4.1 illustrates where each mechanism takes place and the

parties it relates to.

Logging involves the system operator of the subject system and log, which is

maintained by log operators.

Sanitization takes place either between the logging mechanism recording in-

formation and committing it to the log (e.g., to protect commercially confidential

information that even trusted auditors may not see) or before the release and query

mechanism (e.g., to allow for both privacy-preserving releases of information and

access to raw data depending on the party information is released to, and enforce

access control to information).

The release and query mechanism relates the log to the users of transparency

(auditors, data subjects, and other individuals) who then relate to each other and

take action through external mechanisms.

4.3.1 Logging mechanism

Transparency requires information to be recorded and traceable [161], for example

in the form of a chronological list of events or actions that have taken place, a record

4.3. Essential Mechanisms 44

of the data used by the system to operate, or even a complete record of any byte in

a current or past state [162].

Secure logging mechanisms have been of interest to cryptographers for a long

time [163, 164, 165, 166, 167, 168, 169, 170]. For the purpose of transparency, they

have coalesced under authenticated data structures [31, 32] and transparency over-

lays [29], which are designed to broadly ensure that the log is verifiably append-

only, can be used to lookup information, and is consistent in the sense that it

shows the same information to everyone and does not equivocate. This is typi-

cally achieved with Merkle trees or blockchains, although more recent work has

also explored the use of append-only dictionaries.

Merkle Trees

Merkle Trees are binary trees based on a hash function h such that each node i takes

the value hi = h(hle f t(i)|hright(i)) based on its left and right children. Given that h

is collision-resistant, tamper resistance is guaranteed as modifying any node will

result in a different root hash. This makes it possible to verify the integrity of any

data encoded as a leaf in the tree.

A history tree, following the work of Crosby and Wallach [171], grows from

left to right and is used by systems like Certificate Transparency [172]. This allows

for logarithmic-sized proofs that the log is append-only as new values (e.g., the

hashes of new certificates in Certificate Transparency) are added to the log by a log

server. This addition results in a new Merkle tree and root hash, which is signed

by the log server. Because the tree grows from left to right, it is then possible to

efficiently verify that the new Merkle tree includes everything that was included

in the old one, showing that it is append-only. Looking up specific certificates,

however, requires linear-sized proofs.

As shown by Chase and Meiklejohn [29] the Certificate Transparency log sat-

isfies consistency, meaning a potentially dishonest log server cannot get away with

presenting inconsistent versions of the log to different parties, non-frameability,

meaning that parties cannot blame the log server for misbehaviour if it has behaved

honestly, and accountability, meaning that there exists evidence that can be used to

4.3. Essential Mechanisms 45

implicate log servers that promised to include events but then did not.

A prefix tree, as used by CONIKS [85] to allow users reliant on a PKI (e.g., for

communication apps) to verify the consistency of the public keys of other users, has

leaf nodes ordered in lexicographic order. This makes it efficient to look up values

in the tree, although showing that the log is append-only now requires linear-sized

proofs. For example, a client can register name-to-key bindings in the Merkle tree’s

leaf nodes, which other clients can then lookup on behalf of other users. To verify

a name-to-key binding in the tree, a client checks the signed tree root (STR), which

includes the root hash and a hash of the previous STR (successive STRs form a

chain), and the inclusion of that name-to-key binding with the path from the root to

the leaf node for that name-to-key binding.

Non-inclusion of a name-to-key binding can also be checked by verifying that

given an index (i.e., a name), there is no key data mapped to it.

To prevent incidents, clients monitor their user’s key bindings do not change

unexpectedly and verify that the PKI’s identity providers are presenting consistent

versions of their key directories to all participants by checking that a provider has

correctly signed the STR and that the hash of the previous STR matches what was

previously seen.

Combining Merkle trees

A prefix tree and a history tree can be combined to form a verifiable log-backed

map [173, 174, 175, 176]. (The prefix tree can alternatively be a hash treap [177,

178].)

The prefix tree in a verifiable log-backed map, which can be in the form of a

sparse Merkle tree pre-populated with all possible hashes (e.g., 2256 leaves to match

all possible SHA-256 outputs) [179, 180], serves as a map (i.e., key-value store),

while the history tree is used as a log that records all signed root hashes for the map,

ensuring that clients can verify that the map they are shown has also been shown

to others that have audited the log. This combination of both types of Merkle trees

allows for a wider range of efficient proofs than either type of Merkle tree could

support on its own (i.e., append-only for the history tree, look-ups for the prefix

4.3. Essential Mechanisms 46

tree) [173]. Users, however, still need to collectively check that both Merkle trees

track the same keys and values.

A third Merkle tree can be added to construct an unequivocable log derived

map [181], in which the first tree is a history tree log of operations, which are

batched into a prefix tree that allows efficient lookups of operations, and the third

tree records the root hashes of the second tree.

More recent work by Hu et al. [182] also combines history and prefix trees by

proposing a history tree in which the internal nodes store the root hashes of prefix

trees. At any given epoch, the root hash of the history tree summarizes the state

of all prefix trees at that epoch, making it easier to monitor new changes, while the

internal prefix trees make it easy to look up key values in the current epoch. Because

the history and prefix trees are part of the same tree, checking that both trees track

the same keys and values is easier.

Reijsbergen et al. [183] also combines several types of Merkle trees, this time

a prefix tree in which all the leaves are the root of a Merkle sum tree in which nodes

contain homomorphic commitments to the sum of the values of their child nodes,

down to the value of each leaf. The prefix tree structure enables efficient lookups

whilst the sum tree makes it possible to support a wider range of queries (sums,

counts, averages, min/max, and quantiles) with integrity guarantees.

Append-only dictionaries

Append-only dictionaries based on bilinear accumulators [184] have been proposed

as an alternative to Merkle trees, enabling logarithmic-sized append-only proofs

and polylogarithmic-sized lookup proofs, although high append times and memory

usage, meaning this approach is not yet practical.

Blockchains

Blockchains provide a decentralized and tamper-resistant way of updating and

maintaining a global state. Transactions that update the state are logged on the

blockchain, making it possible to replay all transactions and to verify that something

has happened if it is included in the blockchain, as well as when it was included.

Beginning with Bitcoin [185], blockchains have been used by cryptocur-

4.3. Essential Mechanisms 47

rencies to provide a transparent record of transactions over a network. As

Ethereum [35] and later projects have shown, it is possible to rely on blockchains

to execute arbitrary programs (smart contracts) and record these executions on the

blockchain. This allows a wide range of applications to run transparently on top of

a blockchain or to use an existing blockchain to store evidence in a tamper-resistant

way [18, 17, 186, 83, 2].

Blocks in a blockchain store data (including the state of a smart contract) in

Merkle trees so transparency applications that run on top of Merkle trees can be

adapted to a blockchain so that its consensus protocol replaces the need for gossip-

ing between clients that is required in a Merkle tree based system to guard against

equivocation [187, 188].

Blockchains can be permissionless or permissioned. For logging purposes, the

effect of choosing one or the other is that in a permissionless setting, it is possible to

use an existing public blockchain, such as Ethereum, in which case the blockchain

will be maintained regardless of your use case because many other applications rely

on it, as well of the value of the underlying cryptocurrency. Thus, any incentives

to maintain (or not) a reliable log are taken care of (at a price determined by the

underlying cryptocurrency).

On the other hand, relevant events may not appear in an accurate chronological

order because their inclusion will depend on miners who will primarily care about

including the transactions that maximize their revenue rather than the needs of a

single transparency application.

The effort required to use an existing public blockchain and write a smart con-

tract for it may also be much less than deploying an entire system like Certificate

Transparency, allowing for more applications of transparency.

In a permissioned setting, known pre-determined parties will have to ensure

that the log is maintained but, because there is no need for an underlying cryptocur-

rency, the system could be set up to include new events to the chain as they arrive

rather than at the wishes of an uninterested miner. In this case, because all par-

ties are known and the blockchain is more likely to be application specific than a

4.3. Essential Mechanisms 48

general-purpose blockchain, this setting is also much closer to deploying a Merkle

tree based system like Certificate Transparency, with the benefit (or cost) of having

a consensus protocol.

4.3.2 Sanitization mechanism

The information recorded on a log will often be sensitive, in the sense that it affects

the privacy of an individual or that it reveals confidential information about the

system it is pulled from. For this reason, sanitising the information that is logged

will be necessary but must be done in a way that does not compromise the desired

transparency.

The sanitization mechanism determines how logged information is processed,

in plaintext (i.e., unsanitized), through a privacy-preserving form of data release

(e.g., by adding noise or generating a synthetic data [2]), in an encrypted form

to be decrypted by specific parties (e.g., designated auditors being given access

to raw data, individuals accessing individual evidence [2]), or using cryptographic

techniques such as zero-knowledge proofs to assert relevant properties of the logged

information without revealing the underlying data [17, 18, 83].

Access to unsanitized information may be required if no sanitization mecha-

nism exists that is compatible with the desired transparency. For example, there

may be no way to satisfy reasonable differentially private bounds without adding

excessive noise, to produce zero-knowledge proofs that assert the necessary proper-

ties of the logged information, or simply to rely only on cryptographic proofs about

data. In such cases, it may be necessary to permit access to unsanitized data by

designated auditors, while the public is given access only to sanitized data that can

be used to verify the results of an audit published by the designated auditors.

Beyond the data itself, identifiers (and other metadata) that allow users to verify

their individual data may also need sanitization. CONIKS, for example, uses a ver-

ifiable random function to produce a user identifier for the log that does not reveal

the identity of the user to others [85], and more recent work has introduced append-

only zero-knowledge sets that minimize the leakage from queries [189, 190].

4.3. Essential Mechanisms 49

4.3.3 Release and query mechanism

Once data is logged, it must also be possible to release the data or perform queries

on it. As shown by Reijsbergen et al. [183], it is possible to implement (Merkle tree)

logs in such a way that they natively support broader queries than simple lookups,

but more can also be done.

Given a database, it is possible to store the hash of the database on a log,

enabling users to verify that the database they are querying is the same as the one

indicated by the log if they can download the entire database, but this does not

guarantee the integrity of a query on that database.

Work on single client authenticated databases [191, 192]; that is, outsourced

databases that guarantee the integrity of queries and updates to the database, has

led to work combining authenticated databases with a log such as a blockchain on

which a smart contract is running [193]. The log ensures consistency and allows

clients to verify that the database they are querying (without needing to go through

the blockchain) is the database that has been recorded on the log, allowing for a

broader set of queries than what is natively supported by the log itself.

Specialized formal languages, similar to TILT [194] (developed for the GDPR

transparency requirements), could also be developed to produce application-specific

transparency APIs that return human-readable answers to queries.

As discussed in the case of sanitization mechanisms, data may appear in differ-

ent forms to different parties. For example, only some designated auditors may be

able to access raw data. One way of doing this is simply to encrypt data under the

relevant parties’ public keys so that only they can decrypt the raw data, but another

possibility is for the release and query mechanism to implement access control that

determines who can query the log. Depending on the type of log, this may be more

or less simple. For example, a blockchain based system can implement access con-

trol via a smart contract. This could also be set up to log queries if necessary. For a

Merkle tree based system the access control mechanism would have to be built on

top of the logs.

4.3. Essential Mechanisms 50

4.3.4 External mechanisms

Transparency cannot be expected to be effective by itself, it must work to enable

action based on what it reveals. For example, if transparency produces evidence

that a system has malfunctioned, it can allow aggrieved parties to take legal action,

governance decisions about a platform or network [195], and the removal of parties

from a network if they cause a fault [196]. This entails supporting processes such as

public discussions about the system to which transparency is applied and, for prac-

tical accountability purposes, legal processes that resolve disputes about a system

or more automated processes that similarly make it possible to contest actions taken

by the system. This is a key difference between tools that evaluate the compliance

of a system with preset norms (e.g., the correct execution of a program) and trans-

parency enhancing technologies that can allow the norms enforced by a program to

be contested [3].

This process starts with users being able to check information that is relevant

to them or being notified about such information. Notification tools [197, 198, 199,

77, 200, 201, 202] are a useful way to keep the user in the loop, without needing

them to perform queries, when their explicit consent for an action is not required,

but this does not necessarily allow a user to contest any action that is taken.

For an action to be contested, there must first be evidence of that action. Often

a program is assumed to have been correctly executed unless there is evidence of

the contrary, but systems often fail to produce such evidence [103]. Transparency

should address this, and gossip and consensus protocols can also play a part in

spreading evidence and reaching a conclusion about evidence. What is then impor-

tant is that the evidence be useful.

For an automated process, the proof must fit the requirements of the program

that will evaluate it. For a non-automated process, such as a legal process, evidence

being useful means that it should be admissible in the relevant jurisdiction. Admis-

sibility involves the data itself and also the authentication of the data, its integrity,

the network over which the data is exchanged, and how it is then stored [203].

In both cases, this requires the form of the evidence and the process in which

4.4. Transparency and Security 51

it will be used to be taken into account before it is produced for it to be useful. In

the non-automated case in particular, evidence is not sufficient to contest a system

by itself (unlike automated processes) and the outcome of the dispute process can

vary much more, up to contesting the existence and norms of the system.

In such cases, it may not always be clear when considering a single event,

why the system failed [7]. This can require a broader discussion about the system

and both the individual evidence and aggregate evidence (e.g., error rates) about

the system to be considered to see which is more likely. To act on information

also requires the ability to understand that information, which can be made easier

via explanations [204], context [112], and labels [119, 122]. This is particularly

important, but also challenging, because disclosure practices are not always well

designed [205].

4.4 Transparency and Security
Although many transparency enhancing technologies have come from security and

cryptography research (e.g., cryptographic logs) and, therefore, have involved a

security-focused approach, this is not always the case. Moreover, even for crypto-

graphic mechanisms, threats are typically expressed in terms of the cryptographic

properties of the mechanisms, particularly when these mechanisms are introduced

as abstract primitives, useful for applications outside of transparency, rather than as

part of a system focused on transparency, which is our approach here.

4.4.1 Assets and beneficiaries of transparency

The inputs, processes, and outputs, of systems are assets for the parties that own

and operate them. The value of these assets can depend on their confidentiality.

Datasets, a codebase, a machine learning model and its outputs, can all contribute

to a competitive advantage, and their confidentiality can also help avoid liability for

flaws in the system, or give the illusion of technical sophistication.

Transparency can benefit system operators if it increases public trust. This can

be true regardless of whether or not the system is good by any measure because an

organization operating a flawed system may engineer a form of transparency that

4.4. Transparency and Security 52

does not reveal these flaws by, for example, limiting transparency to only reveal

favourable information.

Because transparency does not necessarily increase trust, however, operators

of reliable systems may feel they have little to gain and operators of unreliable

systems may have little to lose. That is unless transparency is deployed in such a

way that, for example, it harms those who operate unreliable systems by enabling

consequences.

For the public, transparency should be a valuable asset, revealing useful infor-

mation about a system over which they have no control and allowing them to take

action by choosing whether to use the system, contest it, and hold the system oper-

ator to account for any faults. Privacy concerns over the public release of sensitive

data that pertains to them may, however, be an important drawback.

Thus, transparency can be both beneficial and a drawback for system oper-

ators and the public, and, importantly, the ways in which the public may benefit

from transparency may be a drawback for the system operator. When this is the

case, it should be ensured that blame avoidance strategies (e.g., avoidance of record

keeping, gaming performance metrics) are not put into place [206].

4.4.2 Threats based on essential mechanisms

Logging

The logging mechanism relates to the system operator of the system, from which

information is recorded, and the log operators that maintain the log. Assuming

that the logging mechanism is based on sound cryptography (e.g., a secure hash

function, public key encryption scheme, and digital signature scheme) then what

remains as a threat is the ability of a malicious system operator (or whichever party

is responsible for logging information) that attempts to compromise what makes it

to the log in the first place.

sanitization

As sanitization can take place before or after information is logged, threats can

come from either the system operator (before logging) or from data releases and

4.4. Transparency and Security 53

queries (after logging).

A system operator could try to compromise a sanitization mechanism just as

they would the logging mechanism itself. A sanitization step taking place before

the information is committed to the log would be intended to work towards the con-

fidentiality of commercially sensitive information about the system or to respect

the privacy of users who relate to logged data. This could be abused by the sys-

tem operator to hide other information without having to compromise the logging

mechanism.

For a sanitization mechanism that takes place after information is logged,

threats are posed by parties attempting to learn private information about others

from the information they have access to.

The sanitization mechanism could also be used by log operators, if sanitiza-

tion is done at the interface between the log and users of transparency, or auditors,

if they are given access to raw information that they sanitize for public release, to

compromise the information that is released. This can be achieved either by pro-

ducing sanitized information that does not relate to the original information (e.g.,

releasing wrong statistics) or relying on an honest use of a sanitization mechanism

that obfuscates some information as part of its use (e.g., by adding noise).

Release and query

The form of the information made available by release and query mechanisms will

depend on the sanitization mechanism, so the threats that are specific to release and

query mechanisms will be those that target the access control it implements and

the integrity of the information (sanitized or unsanitized) that is released. Given

that information should broadly be released to everyone except for individual evi-

dence (available only to data subjects) and unsanitized information (available only

to trusted auditors), the threat is that any other party may try to pose as an individ-

ual or trusted auditor to gain access to their privileged information. The right to

access under the GDPR has been abused for this purpose [207], as well as to infer

information about the organization answering the query [208].

If information is simply released, without the need for queries, threats could be

4.4. Transparency and Security 54

Table 4.1: Threats for transparency enhancing technologies based on editorial control (EC)
and individual evidence (IE).

Mechanism Threat Affected transparency property Threat actor(s)

Logging Compromised logging mechanism (EC, IE) Integrity System operator
Compromised log server (EC, IE) Integrity, Availability Log operator
Collusion between system operator and log operators (EC, IE) Integrity, Availability System operators, log operators

sanitization Loss of privacy for data subjects Respect of privacy and confidentiality Users of transparency
Control over logging (EC. IE) Availability System operator
Control over release and query responses (EC, IE) Integrity Log operators, auditors

Release & Query Access to raw data or individual evidence Respect of privacy and confidentiality Users of transparency
Restricted releases (EC, IE) Availability, interpretability Log operators, auditors
Constraints on queries (EC, IE) Availability, interpretability Log operators

External mechanisms Misinformation & disinformation Interpretability Auditors, data subjects, third parties
Lying about individual evidence (IE) Trustworthiness Data subjects
Discrediting individual evidence (IE) Actionability Third party individuals

posed by having only a partial release of information, or a different release of infor-

mation to different users. When queries are involved, the threats are that the query

mechanism could constrain acceptable queries to queries that are not practically

useful. It could even do so for a priori valid reasons such as limiting the privacy

loss associated with queries, as in a differential private query model once the pri-

vacy budget is used up. A limited query mechanism could also serve to require an

impractically large number of queries to obtain any useful information.

External

External mechanisms (not necessarily technical mechanisms) represent the inter-

actions between users of transparency and the actions that they can take based on

it. The threat in this case is misinformation and disinformation and the threat ac-

tor can be any user of transparency giving (mistakenly or intentionally) inaccurate

information.

This can be seen as an attack on the integrity of the information made available

through transparency, which can be mitigated by ensuring that the same information

(barring individual evidence) is available to all. In the specific case of individual

evidence, it should be ensured that an individual cannot lie about their individual

evidence, but also that they can use that to show that any individual evidence they

disclose is correct.

Editorial control and individual evidence

Examining different attempts to implement transparency around the world, Taylor

and Kelsey found that the two general threats to transparency were editorial control,

4.5. Transparency Infrastructure 55

the ability to control what is made transparent, and individual evidence, the ability

to suppress the ability of a person to find information that relates to themselves

through transparency [98].

We relate this to the mechanism-specific threats we have outlined above in Ta-

ble 4.1. Both editorial control and lack of available individual evidence can occur

through the system operator (logging mechanism), and the log operators and au-

ditors (sanitization and release and query mechanism), resulting in effects on the

external mechanisms.

4.5 Transparency Infrastructure

4.5.1 Requiring and maintaining transparency

Deploying transparency requires an infrastructure that supports the operation of logs

and the storage of any data required, including data that may not be stored on the

log. Because logs (and any other data) may be used after the system (or its opera-

tor) it originates from stops operating, they must be stored independently from the

system. Thus, although a centralized approach could be sensible on the basis that

only the system operator has a business reason to store that information, it may not

be reliable for transparency.

Relying on distributed storage, however, raises questions about how to dis-

tribute it. Parties such as NGOs monitoring government activities or public insti-

tutions monitoring some businesses may have a strong incentive to support trans-

parency infrastructure that relates to issues that they investigate as it directly sup-

ports their goals.

This can also be the case in commercial settings. Google, for example, is

responsible for the design and deployment of Certificate Transparency. Because

Google Chrome is the dominant browser [209], it has a direct interest in keeping

Certificate Transparency operational, requires that any certificate appears in at least

two logs, and operates some of the logs itself. (Google previously required one of

the two logs to be a log operated by Google [210].)

Unfortunately, this example does not generalize well. In most cases, the parties

4.5. Transparency Infrastructure 56

that design the transparency enhancing technology may not be those that operate it,

or may not have a direct incentive to ensure its success or the resources both in terms

of influence on the ecosystem and technical resources (e.g., in the case of NGOs) to

guarantee it. Proponents of blockchains and cryptocurrencies argue that they offer

the possibility of designing decentralized systems that, via mechanism design, can

ensure that participants in the system have incentives – typically financial – that are

aligned with maintaining the system. Blockchain can then serve as logs, requiring

only a smart contract to deploy, and services such as Filecoin [211] could also offer

decentralized storage when it is necessary to store more than logs.

Users themselves could drive businesses to provide greater transparency as

they do react to, for example, being shown the extent to which they are tracked [212]

and how moderation is applied [213]. However, they often have to rely on tools set

up by system operators that do not provide complete transparency, or transparency

that users can understand [214, 215]. As we already noted in Section 4.4, system

operators may not be incentivized to provide effective transparency, leading to a

market for lemons.

Regulation could also play a part by imposing a statutory requirement to pro-

vide transparency could be through enforcement action of a regulator such as the

Federal Trade Commission or a data protection authority. The European GDPR,

which effectively applies globally to any service that has users who are citizens of

the EU, notably includes several articles concerning transparency.

Designated auditors may also have the power to ask for the infrastructure

needed to operate a transparency enhancing technology. For example, the IPCO

in the UK is tasked with auditing how law enforcement access telecommunications

data (a yearly report is published [132]) and can require that public authorities and

telecommunication operators provide any assistance required to carry out audits,

which could include implementing IT infrastructure [216, Section 235(2)].

Some regulations, like the German Network Enforcement Act (NetzDG), do

include require transparency requirements about, for example, how unlawful con-

tent is dealt with and have resulted in fines for companies such as Meta. Companies

4.5. Transparency Infrastructure 57

differ in how they implement their compliance with this regulation [217] and are

likely to differ in implementing any other kind of transparency requirement. Stan-

dardization may, therefore, be required if there is any hope of achieving reliable

transparency across different types of systems, and this should be done taking into

account threat models and mechanisms to deal with these threat models, and still

allow enough flexibility to adapt to, for example, case-specific sanitization needs.

In particular, because regulators are not the people affected by flawed systems

and can typically only levy fines on system operators who treat these as a cost of

business, transparency that provides information to regulators is unlikely to offer

much progress. Transparency that is user-facing, and can inform users in a way that

allows them to take action on the basis of that information may be more effective.

4.5.2 Truth

A limitation of logs is that their security properties cannot ensure that any logged

data or event is true. Dealing with this depends on how the logging mechanism can

ensure that the recorded value matches that of the object of interest, and what the

logging mechanism actually records.

In Bitcoin, miners reach consensus on which public keys own each bitcoin. A

user may want to send bitcoins to another user but if the transaction is dropped by

the network the transaction fee was too low, then the transaction is never executed

or recorded. Thus, the Bitcoin network is transparent about how the miners view

the network, not about every action of the users in the network.

Moreover, not all real-world transactions are logged because Bitcoin private

keys may be exchanged offline with no mapping between keys and identities to

restrict this.

Likewise, Certificate Transparency is transparent with respect to the set of cer-

tificates accepted by log servers, not with respect to all certificates emitted by cer-

tificate authorities as some may not be logged. Browsers can reject certificates that

do not appear in Certificate Transparency logs, however, which ensures that log

servers that are operated by, for example, Google, have the incentive to log all valid

certificates sent to them by certificate authorities.

4.6. Balancing Transparency With Privacy 58

The interface between the device that records information that is logged and

the log is also important.

A malicious recording device would be a clear weakness so a trusted hardware

interface could be used. The security of trusted hardware components may, how-

ever, be centralized if all units are the same. If one unit is broken then, for example,

the attestation key could leak [218], rendering all other units worthless. This is a

case of weakest-link security that depends on the party with the lowest benefit-cost

ratio in securing their unit [219], in a scenario where that party may be adversarial

and have full physical access to their hardware.

Alternatively, it may be possible to rely on non-colluding parties to cross-verify

information.

Problems may also occur if there is no ground truth for the logged data. For ex-

ample, wage transparency could identify wage gaps but if the party that logs salaries

is the business itself, the logging mechanism (or any computation used to identify

a wage gap [220]) can execute correctly regardless of the data (and the resulting

analysis) being true if individuals cannot verify their inclusion in the computation.

Problems can also occur when dealing with physical objects, because this re-

quires a secure way of mapping physical objects to digital objects that can be au-

thenticated once logged. Mechanisms that provide cryptographic-like mechanisms

to authenticate certain physical objects do exist, however. There is a body of work

that studies how paper documents could be authenticated based on their physical

characteristics [221, 222, 223, 224, 225, 226, 227, 228, 229]. This would allow the

document to be logged with its fingerprint, allowing it to be authenticated later if

required.

4.6 Balancing Transparency With Privacy

Because privacy concerns can create legitimate restrictions on transparency, privacy

enhancing technologies that preserve privacy while retaining the utility of informa-

tion can enable transparency. (In turn, transparency can help users identify privacy

risks [230, 231, 232, 233].)

4.6. Balancing Transparency With Privacy 59

There are two types of information to consider, aggregate information re-

lated to a population and information related to individuals. Aggregate informa-

tion makes it possible to determine how the system is functioning as a whole and

whether it is, for example, (un)fair, (un)biased, or error-prone. By itself, this can be

enough to reach a conclusion about the system such as whether the system should

be modified, shut down, or to make the choice of participating in the system. For

individuals, it is also important to be able to determine how they are personally af-

fected by the system as, for example, a biased system will not impact all users in

the same way.

In the case of aggregate information, the privacy requirement is that the ag-

gregate information should not leak information about an individual, including the

inclusion of an individual’s data in the data that was used to produce aggregate

information. This often involves differentially private mechanisms that determine

the kind of perturbed data that can satisfy data protection requirements [67, 68],

and zero-knowledge proofs, which allow the execution of a process to be verified

without revealing anything else about the process [19, 14, 15].

For individual information, controlling access to information also matters since

revealing information only causes a loss of privacy if it is revealed to someone other

than the individual it relates to.

While differentially private mechanisms and zero-knowledge proofs appear

necessary to balance transparency and privacy requirements, there are concerns tied

to editorial control and individual evidence that we consider here.

4.6.1 Editorial control

Editorial control encompasses not only the ability to prevent access to information

(e.g., information being logged by the transparency enhancing technology) but also

any way of influencing what is or is not recorded, the format in which it is recorded,

what is shared with who, and the terms under which information is shared.

Differential privacy does this by changing the information that is shared, for

example through the addition of noise or by sharing a synthetic dataset rather than

the original one. While differentially private mechanisms work to preserve as much

4.6. Balancing Transparency With Privacy 60

utility as possible, this is nonetheless a form of editorial control that can work in

favour of an adversarial system operator. This is because the addition of noise

disproportionately affects less represented groups in the data. For example, the

adoption of differential privacy for the U.S. Census could effectively erase smaller

towns from census data [234]. More generally, differential privacy could be used,

under the cover of it being a required privacy enhancement, as a way of masking

bad outcomes on minority groups, or to make low-frequency faults disappear.

Another way in which differential privacy can lead to editorial control is by

limiting the number or type of queries that can be made as part of the query mech-

anism of the transparency enhancing technology. Differential privacy assigns a pri-

vacy budget that dictates how many queries can be made (based on their sensitiv-

ity), placing a limit on what and how much data subjects, third-party auditors, and

third-party individuals can do through a query mechanism. It could also allow an

adversarial auditor (perhaps colluding with the system operator wanting to work

against transparency) to exhaust the privacy budget by performing high-sensitivity

queries that do not reveal anything unwanted.

However, this can be avoided by relying on a release mechanism that gener-

ates synthetic data (although not a general solution [235]) that can be queried ad

infinitum, rather than relying on a query mechanism that serves differential private

answers to queries on the database of original data.

Zero-knowledge proofs can also act as a form of editorial control. A zero-

knowledge proof reveals nothing but the truth of a statement, which can remove

context from a query. Requiring that any query by an auditor be expressed as a

provably true or false statement within the constraints of a formal language may

also restrict the range of possible queries, and prevent necessarily vague queries.

Querying for provable statements can also be made inefficient this way as

queries must be designed without access to data. This could mean iterating over

queries of the type “is the number of data points with attribute α greater than x”.

The result of this is that practically speaking, it is only possible for auditors and

individuals to verify statements that are given to them by those who control the in-

4.6. Balancing Transparency With Privacy 61

formation that is queried, rather than being able to perform their own investigation.

Moreover, detecting a flawed implementation of a zero-knowledge proof sys-

tem that allows counterfeit proofs to be produced can be hard. Flaws in zero-

knowledge proof systems have only happened by accident so far [236, 237], but

there is a precedent for cryptosystems that could plausibly be exploitable by de-

sign [238]. A malicious system operator could attempt to introduce an intentionally

flawed zero-knowledge proof system that would allow them to appear compliant

with any desired norm.

4.6.2 Individual evidence

Individual evidence is desirable for the simple reason that a general overview of

a system may reveal issues with the system (e.g., it is biased against certain at-

tributes or has bugs) but fail to show their impact on individuals (e.g., if one was

discriminated against or affected by a bug). This requires not only knowledge of the

system’s outcome for that individual, which usually will be known for the outcome

to have any effect although this may not always be the case (e.g., for confidential

processes) but also some form of ground truth for what the outcome could have

been, which in general may be harder to obtain.

For example, the covid-19 pandemic caused secondary education exams in the

UK to be cancelled in 2020 and grades to be awarded based on an algorithm using

results of past students as input. The population outcome was normal by design –

the distribution of grades matched historical distributions for each school – but it

meant that students who performed outside the historical norm could be awarded

lower or higher grades than expected for the sake of preserving the historical grade

distribution. Individual evidence in the form of teacher predicted-grades, however,

made it possible to easily identify how students had been affected (e.g., a student

with a high teacher-predicted grade being awarded a low grade) and the algorithmic

marking scheme was quickly replaced with teacher-predicted grades [239].

Individual evidence can also be useful when there is a dispute about whether

an individual has made an error when using a system or has been a victim of a bug.

Human errors and bugs can happen at reasonably low frequencies so conclusively

4.7. Case Studies 62

determining whether one is more likely than the other can be impractical, and nei-

ther the presence of bugs in the system nor the possibility of a human error can be

used to invalidate the other [7]. Individual evidence that makes it possible to iden-

tify the error in an event log and a record of actions by the individual could make it

much more efficient to determine whether the error was human or due to a bug in

the system.

The role of privacy enhancing technologies, however, is often to make it im-

possible to link an individual to an input or output of the subject system’s process.

Differential privacy guarantees that an individual does not have too much of an

effect on outputs so that it cannot be determined their data was used to obtain that

output without an additional mechanism that deals with this.

Zero-knowledge proofs remove the relation between the output of the com-

putation it verifies and its inputs. If individual evidence exists, however, a zero-

knowledge proof could be used to show an individual that their individual evidence

was used in the computation. Without this, an adversarial system operator or auditor

could simply use inputs that they choose or generate to obtain valid zero-knowledge

proofs for whatever they want.

This means that the use of these privacy enhancing technologies to allow the

release of aggregate information requires that additional mechanisms be used for in-

dividuals to obtain the individual evidence necessary to contextualize the aggregate

information and the effect the system has had on them.

4.7 Case Studies

4.7.1 Certificate Transparency

SSL certificates are an essential part of web security, allowing a user’s browser

to verify the owner of a website. Certificates are issued and signed by trusted third

parties, certificate authorities, who can be the source of security incidents [240, 241]

An example of this is the DigiNotar hack [242], which led to hundreds of rogue

certificates being issued with DigiNotar’s signing key and DigiNotar certificates

being rejected by most browsers [243, 244, 245].

4.7. Case Studies 63

Certificate Transparency [172, 246] was developed to address this type of in-

cident. Acknowledging that it is not possible to prevent rogue certificates from

being issued, Certificate Transparency works by making certificate issuance trans-

parent and working against malicious certificate issuance by helping reveal cases

where this happens. This is achieved by using logs based on Merkle history trees

that ensure the list of logged certificates is a secure append-only transparency over-

lay [247, 29].

Certificate authorities submit certificates to the logs themselves and browsers

will only accept certificates that come with a signed certificate timestamp from log

servers, so a malicious certificate authority cannot compromise the efficacy of the

logging mechanism by not submitting certificates that they issue to logs and col-

lusion between a certificate authority and a log server is mitigated by requiring

multiple signed certificate timestamps from different logs.

Certificate Transparency is widely deployed, with the percentage of main-

frame HTTPS page loads and HTTPS connections with at least two valid signed cer-

tificate timestamps reaching above 60% as of 2018 for Chrome users [248]. There

is significant infrastructural backing from organizations like Google, Mozilla, and

Cloudflare, and free services such as Let’s Encrypt [249].

There is no sanitization mechanism involved in Certificate Transparency, al-

though some interactions involve privacy concerns for users. For example, when

their browser queries a proof of inclusion in a log, it reveals the website that the

user is browsing. As a result, most clients do not directly request proofs of inclu-

sion, although solutions based on fuzzy ranges, private set intersection, and private

set membership protocols have been proposed [210].

Reporting that a certificate has not been included in a log also reveals a user’s

browsing activity for that website. This can be mitigated by using zero-knowledge

proofs to allow the browser to prove to a browser vendor (e.g., Google) that it knows

a signed certificate timestamp signed by a log server (without revealing it) despite

the log omitting this certificate, therefore showing that the log does not have in-

tegrity [16]. This approach has downsides, however, as it would require changes to

4.7. Case Studies 64

log implementations and APIs, and obfuscate details in investigations of log misbe-

haviour [250], showing the tension between transparency and privacy goals.

Other issues exist with the certificates themselves and logs, which can be used

to identify potentially vulnerable websites because websites with expired certifi-

cates tend to more outdated software that may be vulnerable to CVEs [251]. The

volume of information available through Certificate Transparency also makes it pos-

sible to monitor logs to identify new DNS names (i.e., service endpoints) that may

be vulnerable to an attack, rather than inefficiently scanning the IP space [252].

Logs can also be mined to detect subdomains, as well as other sensitive informa-

tion including names, usernames, email addresses, business relationships, and un-

released products [253].

The volume of logged certificates poses scalability issues as well. Monitors,

who fetch and try to spot suspicious certificates, cannot guarantee that fetching

certificates returns a complete set of certificates, meaning that fraudulent certificates

may be logged but not spotted [254].

External mechanisms play an important role in Certificate Transparency. Cer-

tificates must be revoked as time passes or in the event of an incident (e.g., Dig-

iNotar). In such a case, a human decision must be made based on the information

available and the potential to act on that information. The latter means that power is

concentrated in browser vendors (e.g., Google, Mozilla, Microsoft, Apple, Brave)

which are the only parties who can act on certificate transparency revealing a ma-

licious or compromised certificate authority by blocklisting it. Expert users can in

principle also inspect logs, but represent a tiny minority of users.

Gossip protocols should play a role in enabling clients to exchange messages

containing warnings or inconsistencies between signed tree heads of logs [255], but

gossiping is not widespread [256]. There are several ways to work around this,

replacing gossiping as a type of external mechanism with a protocol that is integral

to the transparency overlay.

The first way is to use a blockchain and rely on its consensus protocol for

consistency [187, 188], but this can be expensive because of transaction costs and

4.7. Case Studies 65

has slow finality if relying on a slow blockchain (e.g., Bitcoin or Ethereum).

The second way is to rely on witnesses (e.g., the different Certificate Trans-

parency log servers) could collectively sign a checkpoint of a log, producing some

form of consensus that the log has been verified up until the checkpoint [257], but

this could suffer from liveness issues if there are too few witnesses.

4.7.2 Blockchain based cryptocurrencies

Cryptocurrencies, such as Bitcoin [185], Ethereum [35], and many others, aim to

enable decentralized peer-to-peer transactions between users that do not rely on any

centralized institutions such as banks, Paypal, and VisaNet [185].

This requires solving the problem of currency minting and double-spending

such that no single user can unilaterally determine the amount of tokens they con-

trol, or spend the same tokens multiple times. This is achieved by relying on a

blockchain, which records blocks of transactions (that refer to the previous block in

the chain), which are mined (i.e., validated) by miners expending a scarce resource

such as computational work (e.g., proof-of-work, proof-of-storage) or stake in the

currency (proof-of-stake) for the right to mine blocks. The state of the blockchain is

public and agreed upon by the nodes in the network through a consensus protocol,

allowing anyone to track any asset on the network.

Chase and Meiklejohn [29] considered the Bitcoin blockchain as one of their

two case studies (the other being Certificate Transparency) in their formalization

of transparency overlays. The important difference between the two systems that

emerged is that miners in permissionless blockchain systems are not known and,

therefore, cannot be held responsible for faults and are not trusted to provide consis-

tent views of the blockchain. This can be dealt with through penalties and slashing

mechanisms that exist in proof-of-stake cryptocurrencies, such as Ethereum [258],

to directly fine or remove from the network block validators that misbehave because

being elected to be a block proposer or validator requires staking funds.

Nonetheless, although it is possible to see what is going on with blockchain

explorers (e.g., https://www.blockchain.com/explorer) that display

the latest block information, users must download, store, and verify the entire

https://www.blockchain.com/explorer

4.7. Case Studies 66

blockchain to assure themselves they have the correct information.

As blockchains record an increasing number of transactions they become larger

and more expensive to download, store, and verify. For example, the Bitcoin and

Ethereum blockchains now amount to hundreds of gigabytes of data, making it

difficult for most users to operate a node that independently verifies the state of the

blockchain. As a result, users often run light clients that verify only block headers

and the transactions inside blocks, decreasing security.

Transparency in this setting, whether at the stage of validating blocks or later

auditing past transactions, is useless if it is not used to verify the system’s consis-

tency and ensure that only valid transactions are processed, so this is a problem that

relates to the transparency of the system.

One approach to solving this issue is based on succinct blockchains that reduce

the computational costs of verifying the blockchain [259, 260]. Recursive succinct

arguments of knowledge can be produced in time proportional only to the number

of transactions added since the previous block and verified in constant time [260].

To verify the blockchain, this allows blockchains to effectively be compressed from

hundreds of gigabytes (the size of a blockchain after a few years) to a 22 kilobyte

proof that verifies transactions and consensus rules, which can be verified in mil-

liseconds.

Another approach is based on fraud proofs, which involve full nodes producing

proofs of invalid transactions that light clients can efficiently verify to narrow the

security gap between full nodes and light clients [261, 262]. Fraud proofs also play

a role in enabling scaling solutions such as optimistic rollups on Ethereum [263],

which process transactions off the main chain (reducing congestion and transac-

tion fees) and then post only compressed transaction data on the main chain. The

transparency obtained from the transaction data posted on the main chain makes

it possible to verify the validity of transactions and produce fraud proofs for any

invalid transactions. (Zero-knowledge rollups, the alternative to optimistic rollups,

rely instead on proofs of validity to prevent invalid transactions [264].)

Another commonality with Certificate Transparency is that blockchains do

4.7. Case Studies 67

not necessarily offer much in terms of sanitization mechanisms, and there is no

right level of privacy that is agreed upon, between full transparency that compro-

mises basic privacy expectations and fully obfuscated transactions that rely on the

blockchain as an integrity check rather than a transparency mechanism.

Early systems, such as Bitcoin and Ethereum, do not offer any privacy be-

cause, although they are pseudonymous, it is easy enough to identify unique users

by studying the public transaction flows recorded on the blockchain [265] and trace

coins that have been used as part of some unwanted activity [266, 267], a practice

that has been commercialized by companies such as Chainalysis, TRM, and Elliptic.

More recent systems have attempted to provide greater privacy [268] through

the use of zero-knowledge proofs (e.g., Zcash [269]), ring signatures (e.g., Mon-

ero [270]), coin mixing services (e.g., Tornado cash [271], sanctioned by the US

Treasure since August 2022 [272]), and network level mixing (e.g., Nym [273]).

Not all attempts have been successful in achieving their privacy goals because of

low adoption, design flaws, and the inherent availability of auxiliary information

available via blockchain analysis that can be exploited [274, 275, 276, 277, 278,

279].

Balancing privacy goals with the goal of stopping tainted funds (e.g., stolen

funds) from being laundered through, for example, mixing services has also been

shown to be possible. One possible solution is to produce a zero-knowledge proof

that the funds one has put through the mixing service did not come from any ad-

dress that is publicly associated with tainted funds. In this case, the transparency

that allows the addresses containing stolen funds to be identified would allow other

addresses to use privacy services without the risk of facilitating the laundering of

stolen funds [280].

Another possible solution is collaborative deanonymization [281], which

would allow users to contribute information that helps identify a source of coins

processed by a mixing service, enabling transparency that can be determined by

users themselves rather than system designers.

External mechanisms also play an important role in blockchains and their gov-

4.8. Conclusion 68

ernance. The blockchain can show miner behaviour such as front-running [282],

evidence of hacks, trace stolen funds, and so on. This has led to important de-

bates about, for example, whether the 2016 DAO hack on Ethereum should be

reversed with a hard fork (leading to the split between Ethereum and Ethereum

Classic) [195], or whether the size of Bitcoin blocks should be increased (leading

to Bitcoin Cash and Bitcoin SV).

Social influence also plays a role in such discussions as public figures (e.g., Vi-

talik Buterin for Ethereum) and influential companies (e.g., Blockstream employed

many Bitcoin Core developers) can sway public opinion. In principle, anyone can

suggest improvements and fork a blockchain to implement their suggested improve-

ments and publicly showcase them. Thus, although miners have the power to en-

force changes as they run the software and validate transactions, and the few de-

velopers with write access to the software repositories have privilege over the code,

transparency enables some redistribution of power as discussions can be based on

entirely public information.

4.8 Conclusion

This chapter provides a systematization of log based transparency enhancing tech-

nologies, identifying the requirements and essential mechanisms of transparency

enhancing technologies, and showing how threat models relate to issues of editorial

control and individual evidence.

There are many use cases for transparency: Certificate and Key Trans-

parency [246, 172, 175, 85, 187, 186, 190, 189], cryptocurrencies [185, 35, 269,

270], binary transparency [283, 284], decentralized authorization [181], and so-

cially driven applications such as transparency about wage gaps [220], financial

markets [285], legal processes [18, 17, 83], data sharing [2] and usage [286],

data mining [287], inference [288], advertising [289], and open government

data [290, 291]. Many of these rely (or could as they adapt their threat models)

on logs and sanitization mechanisms as we have described.

There are clear challenges to tackle, relating to the infrastructure that would

4.8. Conclusion 69

enable transparency, and balancing transparency with privacy and confidentiality

concerns. The two case studies we have provided, Certificate Transparency and

cryptocurrencies, show how many of these challenges arise in practice for each

essential mechanism and, in some cases, how they can be addressed.

Several additional challenges must also be resolved for transparency enhanc-

ing technologies to be practically useful in supporting users and processes such as

legal disputes, in which they will engage based on what transparency reveals, and

regulations that require transparency.

As we have discussed, there are many possible use cases and approaches

that can be taken in designing and deploying transparency enhancing technologies.

Based on the history of transparency, effectiveness is not guaranteed. The design of

transparency enhancing technologies should, therefore, ensure that any technologi-

cal attempt to enable greater transparency focus on making transparency not a goal

in itself but a tool that serves a broader aim in the system in which it is put in place.

Chapter 5

VAMS: Transparent Auditing of

Access to Data

5.1 Introduction

Personal data plays an important role in activities where there is a high cost of fail-

ure, as is the case in healthcare, preventing and detecting crime, and legal proceed-

ings. Often, however, the organizations that need access to this data are not the ones

who generate or hold the data, so data must be shared for it to be used. Such sharing

must be done with care as improper sharing or modification of sensitive data can re-

sult in harm to the individuals whose data is involved, and others, whether through

breaches of confidentiality or incorrect decisions as a result of tampered data. If

there is widespread abuse of personal data, people may become unwilling to allow

their data to be collected and processed even when it would benefit themselves and

society.

Simple restrictions on sharing of personal data can be automatically enforced

through access control and cryptographic protections, such as preventing unautho-

rized parties from accessing databases in which personal data is held. However,

other equally important restrictions involve human interpretations of rules, consent,

or depend on information not available to the computer system enforcing them. For

example, access to medical records may be permitted only when it would be in the

interests of the patient. Similarly, access to communication records may be permit-

5.1. Introduction 71

ted only if it is necessary and proportionate to prevent crime.

In such cases, rules cannot reliably be automatically enforced in real-time so

the approach commonly taken is to keep records of access attempts and subject the

actions to audit. Provided that the audit can detect improper activities and viola-

tions are harshly punished, abuse can be effectively deterred. Statistics published

about the audit can also provide confidence to society that access to data is being

controlled and that organizations who can access data will be held to account.

This raises questions about who performs the audit and how the auditor can

be assured that the records they see are accurate. If individuals at risk of their

personal data being misused do not trust that the auditor is faithfully carrying out

their duties then the goal of the audit will not be achieved. However, because of

the sensitivity of personal data and the records containing the justification for data

being processed, not everyone can act as an auditor. Even if it was possible to find

an organization whose audit would be widely accepted, an audit based on tampered

records would not be reliable.

The integrity of the data that is accessed is also important when actions are

taken based on this data. When making a medical decision or conducting legal

proceedings, relying on tampered data can have severe consequences. It may be

possible to refer back to the organization that collected the data to verify its integrity,

but if that organization no longer holds the data or has gone out of business, such

verification is not possible. Digital signatures can provide some confidence that

data is genuine, but if the private key is compromised then any data signed by that

key is subject to doubt, even if it was created before the point of key compromise.

To improve on the current situation, we propose VAMS, a system that enables

transparent audits of access to data requests. This is achieved by allowing auditors

to verify the integrity of the data they see and publish audits that can be publicly ver-

ified without compromising the privacy of the parties involved, as well as allowing

individuals to audit requests for data that relates to them.

5.2. Motivating Scenarios 72

5.1.1 Outline of the Chapter

Section 5.3 introduces our setting, threat model, and goals, which address trans-

parency (verifiable audits of aggregate and individual outcomes) and privacy (the

verifiability of audits cannot reveal more than what is intentionally revealed by au-

dits).

We describe in Section 5.4 the three mechanisms that we use to build VAMS.

Tamper-evident logging provides integrity for the information they see on the log. A

log entry tagging scheme allows users to efficiently find log entries that are relevant

to them. MultiBallot, a novel adaptation of ThreeBallot [70] as a rule-based way of

generating a synthetic dataset, allows published audits to be publicly verified with

only a small expected privacy loss.

The operation of VAMS is described in Section 5.5, while Section 5.6 argues

that it achieves the goals stated in Section 5.3, and Section 5.7 shows that the two

implementations of the log, based on Hyperledger Fabric (HLF) and Trillian, show

sufficient scalability and functionality, as well as the ability to accurately verify

statistics with MultiBallot. Our results show that VAMS can serve as a lightweight

overlay applicable to many use cases.

5.2 Motivating Scenarios
To motivate the design of our system, we consider two challenging scenarios: con-

trolling the access of law-enforcement personnel to communication records and the

access of healthcare professionals to medical data.

5.2.1 Law-enforcement access to communications data

In the UK 95% of serious and organized crime cases make use of communications

data [292] – metadata stored by telecommunications providers in their billing sys-

tem about account holders or their use of communications networks (e.g., phone

numbers called, address associated with an account, location of a mobile phone).

Telecommunications providers are required to store this data for up to 2 years,

but once this period has expired and there is no business reason to store this per-

sonal data, they are required to delete it. Within the period that data is stored,

5.2. Motivating Scenarios 73

law-enforcement personnel is permitted to request access, provided that they can

demonstrate that their actions are legally justified1. At the time a request is made,

there is, however, no external oversight. Instead, information about the request

and the justification for access are stored and made available for audit by the In-

vestigatory Powers Commissioner’s Office (IPCO)2. IPCO then assess whether law

enforcement personnel make appropriate use of the powers they were given, and

publishes reports with statistics of how these powers were used [293].

Communications data plays an important role in the investigation of criminal

offences, but may also be used as evidence in legal proceedings, for the prosecution

or defence. If the integrity of the evidence is questioned, a representative of the

telecommunications provider will be asked to appear in court to verify the evidence

and attest to its accuracy. If technical issues arise related to this evidence, one of

the parties to the case may also request that the court request assistance from an

expert witness. This process is expensive, time-consuming, and even impossible if

the provider has deleted the original data in the time between the law enforcement

agency requesting it and the data being required in court.

To improve the process, industry standards allow providers to sign or hash

communications data when it is provided in response to a request from law enforce-

ment. Someone who needs to verify an item of data can compare the hash to the

one stored by the provider, or verify the digital signature using the provider’s public

key [294]. However, if the provider’s private key or hash database is compromised,

any evidence presented after to the compromise will be brought into doubt, even if

it was generated before the time of compromise.

Our system can be applied in this scenario, allowing the integrity of commu-

nications data evidence to be demonstrated, even if the communications provider

which produced the data no longer exists or has been compromised. Furthermore,

the system will give assurance to the auditor that records of requests to access com-

1Similar legal powers are available in the US through the use of administrative subpoenas, but as
there are no publicly available statistics for their use and there is no centralized oversight, we focus
on the UK case.

2Before to September 2017 this role of IPCO was the responsibility of the Interception of Com-
munications Commissioner’s Office (IOCCO).

5.2. Motivating Scenarios 74

munications data have not been tampered with, and assure society that reported

statistics have not been improperly manipulated by the auditor. We also show how

the system protects the privacy of individuals whose data is requested and also pro-

tects the confidentiality of ongoing law-enforcement investigations.

5.2.2 Access to healthcare records

In our second scenario, we consider how to empower individuals by giving them

control over how their medical records are used and shared. In a healthcare system,

once consent has been given by a patient, various actors should be able to access

various records associated with that patient. For example, their general practitioner

should be able to access scans that were run at a hospital, and researchers running

academic studies or clinical trials in which the patient has enrolled should be able

to access records relevant to the study.

Currently, patients can only give permission for broad types of activities and

may have legitimate concerns that their information is being used inappropriately.

Conversely, patients with serious diseases (e.g., cancer, motor neuron disease) often

have trouble getting the treatment they need, as universities conducting studies are

legally blocked from contacting them, and patients are unaware that such studies

are going on.

Opening up access to medical databases may fulfil the needs of some patients

but would also open up the potential for abuse, so it is important for patients to have

visibility into how their data is being used to understand the implications of their

consent. For clinical practice, the default could be that patients opt-in to sharing

their data, although they can always opt out if they wish. For academic studies and

clinical trials, the default should be that they are opted out, but can opt-in. They

can even choose at some granular level (e.g., according to the type of study) which

studies they want to opt in to.

One issue with having patients opt in individually is that for some studies this

process may not result in a large enough sample. Equally, if patients are deluged

with requests for consent, they are likely to resort to some default behaviour (“click-

through syndrome”) without understanding what they have consented to. As such,

5.3. Threat Model and Goals 75

Figure 5.1: The parties in VAMS and their functionalities. The optional data broker would
act as a user.

patients could outsource these decisions to data brokers; that is, organizations that

pay attention to the studies being conducted and are authorized to provide consent

on behalf of patients registered with them.

Our system can be applied to allow patients to share their data in such a way as

to protect their privacy while ensuring that unauthorized parties are prevented from

having access and that authorized parties abusing their access can be detected.

5.3 Threat Model and Goals
Our setting (illustrated in Figure 5.1) involves agents, data providers, users, audi-

tors, log servers, and (optional) data brokers. Table 5.1 summarizes the functional-

ities and malicious behaviours for each party, which we describe below.

The log is a key-value store of access to data requests. The values of log entries

are records, tuples of elements such as the attributes of a data request (e.g., the type

of data requested by law enforcement) or answers to a medical questionnaire. The

log can also contain datasets and statistics published by auditors or a link to the

datasets and statistics along with a hash to verify their integrity. Log servers host the

log of requests (host). A malicious log server would aim to give inconsistent views

of the log to auditors and users (i.e., attack the availability of logged information).

5.3. Threat Model and Goals 76

Table 5.1: The parties in the system, the functions they perform and their malicious be-
haviour.

Party Function Malicious behaviour

Agent request: append a request to a data provider to the log Provide an invalid request
Data provider provide: answer a request that is on the log Provide invalid data

detect: detect if log servers are behaving dishonestly
User check: look for relevant log entries Access requests relevant to other users

monitor: verify the statistics published by auditors Infer information from the statistics
detect: detect if log servers are behaving dishonestly

Auditor audit: check the log entries for misuse or errors Infer information from the log
publish: publish statistics about entries on the log Publish inaccurate statistics
detect: detect if log servers are behaving dishonestly

Log server host: return the log to parties wishing to inspect it Provide inconsistent views of the log
Data broker broker: respond to requests in place of a user according to their preferences Misrepresent the preferences of the user

Agents (e.g., law enforcement, medical researchers) request access to user data

from data providers (request). A malicious agent would aim to access data without

it being logged or submit an invalid request, and try to tamper with a logged invalid

request before an auditor or user audits it. In other words, a malicious agent would

aim to attack the integrity of the log.

Data providers (e.g., telecommunications providers, healthcare providers,

users) collect user data and receive requests from agents (provide). A malicious

data provider would aim to give access to data without it being logged.

Auditors audit the log (audit) and publish statistical reports (publish). In the

UK, the IPCO is an example of this kind of auditor. They must be able to detect

if log servers are behaving dishonestly (detect). A malicious auditor would aim to

publish an inaccurate report (i.e., compromise the integrity of the audit).

Users are members of the public that check requests for their data (check) and

verify audits (monitor). They must also be able to detect if log servers are behaving

dishonestly (detect). A malicious user would aim to learn information about another

user (i.e., attack their privacy) by using the log or published audits.

Data brokers are non-essential intermediaries that users can rely on to deal with

requests if they are willing to serve as a data provider by, for example, providing

data to a study. A data broker can then deal with requests (broker) according to pre-

set rules from the user. A malicious broker would aim to misrepresent the user’s

preference accepting (or rejecting) requests that the user’s rules would prohibit (or

allow).

5.3. Threat Model and Goals 77

Table 5.2: Transparency and privacy goals that address the malicious behaviours defined in
our threat model.

Goal Supports Protects against

Log availability (T1) Agents and users (detect) Log servers providing inconsistent views of the log
Log integrity (T2) Agents (audit) and users (check) Agents tampering requests
Verifiability of inputs used to compute statistics (T3) Users (monitor) Auditors releasing inaccurate statistics
Verifiability of published statistics (T4) Users (monitor) Auditors inaccurate statistics
Transparency of the system (T5) Auditors and users Reliance on agents, data providers, or (for users) auditors
The log itself does not reveal any sensitive information (P1) User, agent, data provider privacy Parties wanting to infer information from the log
Verifying an audit is privacy preserving (P2) User privacy Parties wanting to infer information from the statistics

5.3.1 Threat Model

We allow every party to act maliciously except for colluding data providers and

agents as they could simply exchange data without it being logged. This cannot be

prevented with cryptographic techniques because the data must generally exist in an

unencrypted form for its primary use (e.g., routing calls or providing healthcare).

We, therefore, require that agents log their requests and that data providers do not

answer requests without ensuring that the request has been logged. If one of these

parties is malicious, their misbehaviour will be caught by the other.

In practice, VAMS as described here would be augmented by procedural and

technical access controls that prevent confidential data from leaving a system with-

out being logged. The goal of VAMS is to help ensure that requests represented by

the log are compliant with policy and have not been tampered with.

Transparency goals
Our motivation is to provide more agency to users, who in many current systems

have data requested and provided about them but cannot evaluate this process. To

help resolve this asymmetry, VAMS is designed to provide verifiable aggregate

statistics (population outcomes) about requests for data and the use of data that can

be verified by users, and allow users to check for log entries that are relevant to them

(individual outcomes). This is achieved through five transparency goals, which are

summarized in Table 5.2 .

Log availability (T1). It must be possible for users and auditors to access the infor-

mation they require for their respective audits.

Log integrity (T2). Users and auditors must also be able to check the integrity of

the information they access because the information on the log could have been

5.3. Threat Model and Goals 78

modified or they could be given an incorrect view of the log.

Verifiability of inputs used to compute statistics (T3) and of published statistics

(T4). Due to the sensitivity of personal data and the records containing the justifica-

tion for data being processed, not everyone can act as an auditor with wide-ranging

access to log entries. Auditors are therefore relied on to compute and publish ag-

gregate statistics. To minimize the trust required in the auditors, users must be able

to verify both the input and the output of the computation of the statistics. Auditors

could otherwise publish bogus statistics by miscomputing them or by computing

them on a fake dataset that gives the results they desire.

Transparency of the system (T5). Users and auditors should only have to rely on

VAMS itself to perform their functions and not a potentially malicious party.

Privacy goals

Our transparency goals must be complemented by privacy goals to ensure that par-

ties in the system do not learn private information about one another in the process

of performing their audits. This may seem contradictory, but information relating

only to a single party is not necessarily required to evaluate the system as a whole.

VAMS does not control the contents of a published audit so it cannot control the

privacy loss associated with an audit, which will vary based on the requirements and

privacy concerns of auditors. As a result of this, our privacy goals (summarized in

Table 5.2) focus on requiring that VAMS does not lead to a greater loss of privacy

than what is released through a published audit.

The log itself does not reveal any sensitive information (P1). This requires that

the log entries themselves do not reveal any sensitive information, but also that the

log as a whole does not reveal links between requests so the log entries should be

unlinkable.

Verifying an audit is privacy-preserving (P2). It should not be possible to learn

information about individuals from statistics published by an auditor; that is, veri-

fying an audit should not reveal more than the correctness of the audits themselves,

although the audit itself may reveal sensitive information.

5.4. Building VAMS 79

5.4 Building VAMS

VAMS is built using technical mechanisms that we describe below, based on the

rationale that follows.

Central to VAMS is the log containing requests submitted by agents through

request. For the log, key-value stores are a natural choice as log entries (key-value

pairs) include keys (i.e., identifiers) that can easily be queried by users performing

check. Log integrity requirements mean that auditors and users should be able to

verify that the records that they access are those submitted by agents, so the log

must be tamper-evident.

Auditors and users should also be able to detect log misbehaviour; that is,

equivocation in the form of an altered log or a split-view attack in which different

versions of the log to different parties. The need for a tamper-evident log can also

be seen in cases where evidence is required; for example, when an agent must show

that they accessed data with a valid request. In some cases, urgent requests that

are authorized orally (with paperwork authorized only retroactively) are necessary,

such as in the case of a medical or security emergency, so attempting to block invalid

requests as they are issued is not enough.

Requests should be signed so that they can be used as evidence to assign li-

ability and to hold the relevant parties accountable. This would work only if the

evidence produced is robust so that liability can be properly assigned. Evidence

should also exist even if the party that produced it is no longer active; for exam-

ple, if a data provider declares bankruptcy, or if some servers fail, or are destroyed.

Thus, logs should not depend solely on the party tied to the evidence.

Once requests are recorded in the log, auditors perform their audits and publish

the resulting statistics through publish. Users must be able to verify these statistics

through monitor (requiring the published statistics and the data necessary to verify

their results) without learning more than what is revealed by the statistics them-

selves (i.e., specific information about other individual users).

To summarize, we need the following. First, we need some kind of tamper-

evident log, which requires that the state updates of the log be tied to a blockchain,

5.4. Building VAMS 80

a history tree [171], or more generically a transparency overlay [29] with efficient

proofs of inclusion and consistency. Second, we need a mechanism that allows

the log to be efficiently queried (i.e., identifying relevant requests) without reveal-

ing any links between entries on the log. Third, we need a mechanism to publish

statistics that can be verified without revealing more information than what can be

learned from the statistics themselves.

5.4.1 Using Hyperledger Fabric and Trillian as tamper-evident

logs

Existing transparency overlays come in the form of distributed ledgers and verifiable

logs. We have implemented VAMS twice, using Hyperledger Fabric, a distributed

ledger with an underlying blockchain, and Trillian, a verifiable log-backed map.

In both cases, using HLF or Trillian guarantees that the log is tamper-evident

due to the underlying blockchain or verifiable log that records state updates, that the

availability of information on the log can be assured by making log equivocation

detectable, and that the log is easy to query as it is in the form of a key-value store.

Hyperledger Fabric

Hyperledger Fabric [295, 296, 297] is a modular open-source system for deploying

and operating permissioned distributed ledgers whose state updates are recorded on

a blockchain.

A HLF network is composed of peers, who maintain a key-value store that is

updated through transactions on the underlying blockchain, and an ordering service

(i.e., a consensus protocol). Because updates to the ledger’s state (i.e., VAMS’s log)

are recorded on the underlying blockchain that is append-only, the ledger’s state

benefits from availability guarantees against the log equivocating as a log server

that equivocates results in a fork of the blockchain. Integrity guarantees against

tampering of the log are also guaranteed as changes to the ledger’s state appears on

the blockchain, which can be replayed or queried through a key history function.

Peers have identities in the form of X.509 public-key certificates and a Mem-

bership Service Provider (a PKI). These identities allow peers to be split up into

5.4. Building VAMS 81

organizations on the network (e.g., agents, data providers, . . .). This provides a way

of implementing basic access control for operations on the network.

Updating the state of the ledger requires endorsing peers to execute chaincode

(smart contracts) and sign the transaction containing the resulting state update. This

ensures that an endorsing peer can be held accountable for the transactions they

endorse; for example, the requests they make as agents or the requests they accept

as data providers.

Transactions are then sent to the ordering service that packages them into

blocks with which validating peers update the state of the ledger. Only endors-

ing peers are required to execute code for a transaction, so other peers do not handle

any computational burden other than receiving events from the network. The en-

dorsement mechanism also allows for endorsement policies that limit which peers

can invoke or sign transactions for a certain chaincode, for example, based on their

organization.

Trillian

Trillian [174] is an open-source project that implements a generalization of Certifi-

cate Transparency [298] based on three components: a verifiable log, a verifiable

map, and a log of map heads.

Trillian’s verifiable log (not to be confused with VAMS’s log) is an append-

only log implemented as a Merkle tree that allows clients to efficiently verify that

an entry is included in the log (with a proof showing the Merkle path to the tree’s

entry), detect log equivocation (i.e., conflicting tree heads), and verify that the log

is append-only (through Merkle consistency proofs).

The verifiable map (i.e., VAMS’s log) is a key-value store implemented as

a sparse Merkle tree pre-populated with all possible keys as leaves (e.g., all 2256

possible SHA-256 hashes). Although a tree with 2256 unique leaves would not

be practical to compute, only the non-empty leaves have to be computed because

all others will have the same value (e.g., zero) [179]. Clients can then verify that

a certain value is included (or not) in the map at any point in time, with proofs

containing Merkle paths. Combining a verifiable log with a verifiable map leads

5.4. Building VAMS 82

to a verifiable log-backed map, where the log contains an ordered set of operations

applied to the map. Clients can then verify that the entries in the map they view are

the same as those viewed by others by replaying the log and detecting any change

in values of the key-value store.

The log of map heads records the root hash of the log, signed by the log’s

server so that if it equivocates there is a cryptographic proof that it has done so.

Because Trillian does not involve a consensus protocol, it instead relies on gossip

between clients (e.g., auditors and users performing detect) to detect misbehaving

servers by comparing the views of the log that they have received.

As in the case of HLF, the fact that updates to the verifiable map (VAMS’s

log) are recorded on Trillian’s append-only verifiable log provides availability guar-

antees again VAMS’s log equivocating as this will lead to different three heads in

the log of map heads, and integrity guarantees against tampering of VAMS’s log as

updates will appear on the underlying append-only Merkle tree that is Trillian’s log.

5.4.2 Tagging log entries with common identifiers

In order to gain useful information from VAMS, users must be able to efficiently

identify the log entries that contain information that is relevant to them. The values

of log entries (i.e., records) will be encrypted for privacy reasons so this requires a

mechanism that allows agents and data providers to derive keys that users can also

compute only if the entry is relevant to them.

A strawman solution would require users to ask agents for the log entries rele-

vant to them. This would reveal to agents which users are monitoring the log, and

require users to trust agents that could lie about the log entries that are relevant to

them. To remove the need for users to interact with agents, we use common identi-

fiers that can be computed only with information known to a user, the data provider,

and the agent that is involved in a request. By relying on shared information we

remove the need for interaction, and by having the information known to not only

the agent and user but also the data provider, a data provider that is not colluding

with the agent can check that the tag will be correct.

We assume that agents and data providers refer to a given user using (private)

5.4. Building VAMS 83

agent and data provider identifiers, ida and iddp, which are also known to the user

they correspond to but not to others. It is then possible to obtain common identifiers

idc = Hash(ida∥iddp∥n) by using a secure hash function such as SHA-256, where

n is a session identifier that changes deterministically with every request involving

the same pair (ida, iddp).

This ensures different requests involving the same parties are unlinkable as

common identifiers will appear random, but allows users to check requests that are

relevant to them communicating with agents or data providers, which also reduces

the risk of information leaking. The private contents of the requests are then simply

encrypted under the keys of users and auditors so that they can access them.

We assume that ida and iddp are pseudorandom strings like, for example, the

German Electronic Identity Card that can be used for online authentication and has

been analysed from a cryptographic point of view [299]. This is not unreasonable

for purpose-built identifiers, and although it adds the burden of managing them,

software such as password managers or data brokers could be relied on.

An agent or data provider could in principle leak ida, iddp, or common identi-

fiers, but they could just as well leak the data attached to it in the first place. As we

have remarked in the threat model, this cannot strictly be prevented as they control

the data much like they must know the common identifiers to tag the log entries.

Moreover, they would not gain anything from doing so.

5.4.3 Generating synthetic data and verifying statistics with

MultiBallot

To allow published statistics to be publicly verified without incurring more of a

privacy loss than is already caused by the statistics themselves, we introduce a way

for auditors to generate a synthetic dataset Dpriv from the dataset D used to compute

the statistics. We call this randomized mechanism MultiBallot and denote Mn : D 7→

Dpriv the mapping of |D| records in D to n|D| shares in Dpriv.

MultiBallot can be used to support either exclusively univariate statistics or

multivariate statistics. Figure 5.2 illustrates how a record in a dataset D that has e

binary elements can be transformed into shares of a synthetic dataset Dpriv accord-

5.4. Building VAMS 84

Figure 5.2: Example transformation of records in D to shares in Dpriv for univariate and
multivariate statistics. In the univariate case, the record is split into individual
elements. In the multivariate case, the record is used to generate shares with
the same number of elements that are then split from each other.

ing to the rules we describe for each case. Elements, in this case, could be attributes

of a request for data in the law enforcement case (e.g., “request type:urgent/not

urgent”), or of a patient in a medical study (e.g., “has gene X:yes/no”).

In the univariate case, the elements of a record are simply split and shuffled,

which allows univariate statistics to be re-computed without the possibility of com-

puting multivariate statistics. In the multivariate case, the record in D generates

a combination of shares that introduce noise into the Dpriv but preserve the rela-

tive counts between elements in D and therefore allow multivariate statistics to be

re-computed.

In both cases, shares in Dpriv can be tagged so that the published statistics and

their inputs can be verified. The privacy loss associated with the verification of the

statistics through a public dataset Dpriv is also mitigated by ensuring Dpriv cannot

be used to reconstruct D or learn more information than what is learnt from the

statistics in the first place, and (in the multivariate case) by generating it in a way

that guarantees only a small expected privacy loss from having one’s data included.

Generating Dpriv for univariate statistics

Support for univariate statistics, and in particular a restriction to univariate statistics

is important in settings where multivariate statistics are not used due to privacy

concerns. This is for example the reason that IPCO reports contain only univariate

statistics. When only univariate statistics are required, it is, therefore, important that

5.4. Building VAMS 85

Dpriv should not be useful to compute multivariate statistics.

To handle the univariate case, shares in Dpriv are obtained by splitting records

in D into shares that each have one element only and then shuffling them, as in Al-

gorithm 1. Each share is tagged with the element type and a unique share identifier

idshare = Hash(idc∥i) (using a secure hash function like SHA-256) derived from the

common identifier idc of the user and the index i of the share.

Algorithm 1: M1 : D 7→ Dpriv for univariate statistics.

Input: D = {ri = (ri,1, . . . ,ri,|ri|)|i ∈ [1, |D|],ri, j ∈ {2,4}2}
Output: Dpriv = {shares ∈ {2,4}2}
list shares = []
for i = 1, . . . , |D| do

for j = 1, . . . , |ri| do
shares = shares+ ri, j

shu f f le(shares)
return shares

Splitting up the shares ensures that the original record cannot be reconstructed

without knowing the common identifiers used to generate the share identifiers, so

the only thing that can be learnt is the individual counts of elements, which were

already revealed by the statistics themselves. The univariate statistics (i.e., counts)

will be unchanged as they do not depend on more than one element so they are

unaffected by the split of elements and can be verified. Multivariate statistics on the

other hand will not be computable.

Generating Dpriv for multivariate statistics

In cases where multivariate statistics are needed (e.g., medical studies), records in

D are split into n shares that have as many elements as the records. Our approach

is inspired by Rivest’s ThreeBallot voting scheme [69, 70], which works by giving

voters three ballots (instead of one) and having them fill them according to a set of

rules. We extend this to any odd number of ballots (combinations of shares in Dpriv)

where a vote for or against an element corresponds to having an attribute or not. We

show how to use this as a way of generating a synthetic dataset (Dpriv) that can be

used to re-compute multivariate statistics originally computed using D.

5.4. Building VAMS 86

Shares are generated such that the correct value of each element e (i.e., 42 or

24) appears s ∈ [1,k+ 1] times and the “false” value e (i.e., 24 or 42) appears

s−1 times. The remaining elements in the shares are neutral and take the form 44

or 22. Algorithm 2 summarizes this process. Once the shares are generated, they

are tagged as in the univariate case with a share identifier, split up, and shuffled.

Algorithm 2: Generating valid combinations of shares for Dpriv in the
multivariate case.

Input: n = 2k+1,k ∈ N
Output: Valid combinations of n = 2k+1 shares for elements 24 and

42
for e in [42,24] do

list sharese = []
for s = 0, . . . ,k−1 do

tuple shares = (e)
for i = 0, . . . ,s−1 do

shares = shares+(e)+(e)
while length(shares)< 2k+1 do

shares = shares+(44)+(22)
sharese = sharese + permutations(shares)

return shares42,n, shares24,n

Algorithm 3: Mn : D 7→ Dpriv for multivariate statistics.

Input: D = {ri = (ri,1, . . . ,ri,|ri|)|i ∈ [1, |D|],ri, j ∈ {2,4}2}
n = 2k+1,k ∈ N
shares42
shares24
Output: Dpriv =
list shares = []
for i = 1, . . . , |D| do

tuple sharesi
for j = 1, . . . , |ri| do

if ri, j =42 then
← shares42

sharesi = sharesi +
else

← shares44
sharesi = sharesi +

shu f f le(shares)
return shares

5.4. Building VAMS 87

The number of valid combinations B of shares, given by Equation 5.4.1, is

obtained by considering the number of multiset permutations of the shares for each

possible value of s, summing over s, and multiplying by a factor of 2 to account for

both elements.

B = 2
k+1

∑
s=1

(2k+1)!
s!(s−1)!(k+1− s)!(k+1− s)!

(5.4.1)

As an example we look at the record in Figure 5.2, which corresponds to

[42,42,24,24,42]. With n = 3, an element 24 can generate a combina-

tion of shares (24,24,42) and its 6 permutations, and (24,44,22) and its

3 permutations. Similarly, an element 42 can generate a combination of shares

(42,42,24) and its 6 permutations, and (42,44,22) and its 3 permutations.

For each element, a valid combination of shares is picked at random. In Figure 5.2

this results in [(42,22,22), (42,42,24), (44,24,22), (42,24,24),

(24,42,42)]. Split up in Dpriv, these will look like three records of the form

[42,42,44,42,24], [22,42,24,24,42], [22,24,22,24,42].

Valid combinations of shares can be pre-computed, so all that is required given

D is to randomly pick combinations of shares for all records. The shares are there-

fore picked from a distribution given in Equations 5.4.4 and 5.4.5 for each element,

which is derived in more detail in Section 5.6, where it is also shown that the process

of generating Dpriv incurs only a small expected privacy loss.

S42 = S24 =
k+1

∑
s=1

(2s−1)
(2k+1)!

s!(s−1)!(k+1− s)!(k+1− s)!
(5.4.2)

S44 = S22 = 2
k+1

∑
s=1

(k+1− s)
(2k+1)!

s!(s−1)!(k+1− s)!(k+1− s)!
(5.4.3)

Pr(42) = Pr(24) =
S42

(2k+1)B
(5.4.4)

Pr(44) = Pr(22) =
S44

(2k+1)B
(5.4.5)

The level of privacy depends on the original distribution of elements in D and

5.4. Building VAMS 88

the number of shares generated (i.e., the parameter k). This means that the level

of privacy can be tuned by varying k (see Section 5.6). Reconstructing a record in

D will also be highly improbable as given even all but one of the shares generated

from a specific record, finding the correct last share will be improbable as no link

will be revealed by the share identifiers. Verifying multivariate statistics will be

possible (as we will see next), as well as their inputs by using the share identifiers.

Verifying statistics with MultiBallot

Verifying univariate statistics is straightforward because this just involves counting

the number of occurrences of an element having values 0 or 1 in Dpriv, which will be

the same as the number of occurrences in D. Because shares in Dpriv are tagged with

an element type, the total number of shares that correspond to a specific element is

also the same as the number of records in D that include that element.

The multivariate case is a bit more involved and we show how to do it explicitly

for association rule mining, although a similar approach could be used for other

ways of computing multivariate statistics. This allows the results of an analysis of

D to be estimated from Dpriv by computing a matrix populated with the expected

counts of shares in Dpriv, which translates between D and Dpriv.

Association rule mining [86] is one of the most commonly used approaches to

identify if-then rules and relationships between variables in large datasets. Given an

element set E of binary elements of a record and a dataset D of records containing

elements that form a subset of E, rules such as ε ⇒ ε ′ where ε,ε ′ ⊆ E are used to

find interesting relationships between variables; for example, linking a set of genes

with a particular disease. Two measures are commonly used to select interesting

rules: support and confidence.

Support, defined in Equation 5.4.6, indicates how frequently a subset of ele-

ments appears in the dataset; that is, the proportion of records R ∈ δ (where δ ⊆D)

that contain a subset of elements ε ∈ E. Confidence, defined in Equation 5.4.7, in-

dicates how often a rule is found to be true. Given a rule ε ⇒ ε ′, it is defined using

5.4. Building VAMS 89

the support of the rule ε ⇒ ε ′ and the support of ε .

supp(ε) =
|{R ∈ δ : ε ∈ R}|

|δ |
(5.4.6)

con f (ε ⇒ ε
′) =

supp(ε ⇒ ε ′)

supp(ε)
(5.4.7)

Our goal is to estimate the true counts of ε , ε ′ and ε ∪ ε ′ in D based on

observations from Dpriv, which also contains noise in the form of elements e.

Computing the support and confidence measures defined above is then straight-

forward. This process is often referred to as support recovery. For simplicity,

we represent both the original records and the shares as bitstrings. For example,

the record and shares in Figure 5.2 can be represented as [10,10,01,01,10] and

[(10,10,11,10,01),(00,10,01,01,10),(11,01,00,01,10)]. This is the same as the

previous notation with 4= 1 and 2= 0.

We define oD and oDpriv , which contain the number of occurrences of all possi-

ble bitstring permutations in D and Dpriv in Equation 5.4.8. (The number of occur-

rences may be 0 for some permutations.)

oD, opriv =

#[0]

...

#[2t−1]

D,Dpriv

(5.4.8)

We also define M in Equation 5.4.9. This matrix stores the expected bitstring

occurrences E(#[s]) of any bitstring s ∈ [0,2t − 1] in Dpriv (i.e., E[opriv]) for all

possible bitstring permutations and a fixed number of bits t. The value E(#[s]) is

obtained from the distribution of shares given in Equations 5.4.4 and 5.4.5.

M =

E[#[0]]0 . . . E[#[0]]2t−1

...
...

...

E[#[2t−1]]0 . . . E[#[2t−1]]2t−1

 (5.4.9)

A relation between opriv, M, and oD, can be established from the fact that for

each record in D its elements contribute an expected amount of each element in

5.4. Building VAMS 90

Dpriv. Therefore, the number of occurrences of any given bitstring s in opriv is, on

expectation, the sum of the expected amount of that bitstring due to a bitstrings

in D times the number of times these bitstrings (denoted δ) occurred in D, as in

Equation 5.4.10. Thus, we have that E[opriv] is simply the result of multiplying M

with oD, as in Equation 5.4.11.

E[#[s]Dpriv] =
2t−1

∑
δ=0

E[#[s]]δ ·#[δ]D (5.4.10)

E[opriv] = M ·oD (5.4.11)

For the public to verify statistics using values in opriv obtained from Dpriv, the

aim is to reverse this process and infer the counts in oD. Alongside Dpriv, M can

also be safely released as it does not contain any private information. Computing

its inverse M−1, we can therefore estimate oD by multiplying opriv with M−1, as in

Equation 5.4.12.3

oD ≈M−1 ·opriv (5.4.12)

Based on the inferred value of oD, the support and confidence measures for

any element sets ε , ε ′ can then be computed in the usual way. This allows statistics

to be accurately verified, as we show in the evaluation of our implementation in

Section 5.7.

Dpriv is used only for verification of the reported statistics, leaving plenty of

room for minimizing its information content. If D is composed of records with a

large number of elements, but only a few of these have interesting relations that

are relevant in the published statistics, then only these need to be included in Dpriv.

This can significantly reduce the size of Dpriv compared to D.

Our technique can in certain cases support statistics involving continuous vari-

ables. During the rule mining phase, the researcher may need to examine the exact

3If M is not invertible, it can be made invertible with a change that would not significantly affect
the results.

5.5. Operating VAMS 91

Figure 5.3: The three stages in the operation of VAMS. Red, blue and green boxes indicate
information available to auditors, users, and the public. Similarly, red, blue
and green arrows indicate operations that require being an auditor, a user, or
anybody.

values (e.g., blood pressure) but once a relevant threshold is identified, all the val-

ues can be expressed as larger or smaller than that threshold (e.g., blood pressure

over 140/90mmHg). This practice is common in machine learning algorithms. For

example, C4.5 (an extension of ID3 [300]) builds decision trees from sets of data

samples containing both continuous and discrete attributes. Alternatively, continu-

ous variables can be split into multiple binary elements.

5.5 Operating VAMS
VAMS involves three stages that are illustrated in Figure 5.3: appending requests

to the log, querying the log for audits, and publishing and verifying audits. In this

section, we describe each stage and argue that VAMS achieves its transparency and

privacy goals.

5.5.1 Appending to the log

As part of request, agents append requests to the log as values tied to the relevant

common identifiers. If the value is temporarily sensitive then a cryptographic com-

mitment can be used to ensure that correct logging can be verified after the fact.

5.5. Operating VAMS 92

Our transparency goals require that the requests be auditable by the parties

they pertain to (i.e., users performing check and auditors performing audit) without

relying on other parties. Our privacy goals also require that the private contents

of the requests are not visible to any other parties, and that information cannot be

inferred about the requests by linking them with other requests, users, agents, or

data providers. This is assured by encrypting the log entries so that only auditors

and relevant users can decrypt them, and using unlinkable common identifiers.

Once a request is appended to the log it can be answered by a data provider. A

user acting as a data provider that is relying on a data broker to answer requests for

their data could check if the data broker was misrepresenting their preferences by

checking access’ to their data themselves, or simply receiving notifications for the

requests appended to the log that the data broker accepts.

5.5.2 Querying the log

Once requests are logged, users and auditors can verify that the log servers are not

malicious by performing detect, then perform audit and check as required. Both

users and auditors can assure themselves that the information obtained from the log

is correct due to the availability and integrity properties of the log, and audit the

entries of the log. Auditors perform their task over the entire log, or a subset of the

log. Users look only for specific requests by iterating over their common identifiers

until no request is found to determine the possible requests relevant to them.

Users that do not wish to take on this task can choose to outsource it to a data

broker. A downside of this is that the data broker must then be trusted with the

private identifiers tied to requests that the user positively answers. No other trust is

required as VAMS allows users to check the activity of their broker, which can be

logged and audited under the same guarantees as other log entries.

5.5.3 Publishing and verifying audits

Auditors perform publish to release the statistics computed as a result of their audit.

Examples of what might be published are the statistics provided by the IPCO in its

annual report [301] (e.g., the number of urgent requests) or the results of a medical

5.6. Achieving Transparency and Privacy Goals 93

study (e.g., the association of some attribute with a disease).

Our transparency goals require that these statistics be verifiable, but for op-

erational and privacy reasons the original data used to compute statistics cannot be

published. Instead, the synthetic dataset Dpriv generated by MultiBallot (or its hash)

can be published on the log and used to verify the statistics by users performing

monitor, as we have shown in Section 5.4.3. Users whose data was used to compute

the statistics can verify the inclusion of their data in Dpriv as part of monitor.

Assuming all users will take on the burden of verifying statistics is unrealistic,

but the system does not require them to do so. Users that wish to check for access

to their data can do so regardless of others. They can also verify published statistics

even if their data was not used in the computation. Verifying the integrity of a

dataset benefits from more users doing so, but a limited amount of users doing so

will already be beneficial. Others could rely on data brokers, which would be acting

in a way similar to organizations that currently perform Freedom of Information

requests.

5.6 Achieving Transparency and Privacy Goals

5.6.1 Goal T 1: log availability

We have assumed that agents and data providers do not collude so requests will

be logged so availability only requires online log servers. The remaining threat is

then a malicious log server that equivocates, in which case users and auditors could

perform detect as follows.

In the HLF case, equivocation would result in a fork of the blockchain. Both

the main chain and the forked chain would be visible, so equivocation can be de-

tected.

In the Trillian case, a log server that equivocates would have to produce signed

tree heads and Merkle consistency proofs for the alternative Merkle trees. Different

Merkle consistency proofs leading from the same Merkle tree generate different

views of the log, but these differing logs can no longer accept the same Merkle

consistency proofs to extend the logs because the leaves are different. As tree heads

5.6. Achieving Transparency and Privacy Goals 94

are signed by the log server, two inconsistent tree heads can be used as evidence to

implicate the log server [247, 29].

5.6.2 Goal T 2: log integrity

This argument is based on the fact that updates to the key-value store are recorded

on an append-only blockchain (for HLF) or a verifiable log (for Trillian), resulting

in VAMS’s log being tamper-evident.

(HLF case) We rely on the underlying blockchain that records state updates.

Auditors can use the key history function to obtain the state updates that have mod-

ified the value of a key. If they do not trust the integrity of that function (the code

for which is public), they can replay the blockchain’s transactions to detect a party’s

misbehaviour as they will have signed the relevant transactions.

(Trillian case) We rely on the underlying Merkle trees and the Merkle consis-

tency proofs that give the append-only property of the trees. If a malicious party

has tried to tamper with requests, they will have to update a request value, which

will appear in the append-only log. If the log server produces a new tree head for a

tree that modifies requests in the tree associated with the previous tree head, it will

be evident as there cannot be a Merkle consistency proof between the two trees.

Similarly, if a leaf of an existing tree is removed, the Merkle root of the tree will no

longer match the leaves.

Auditors can then perform audit by querying the state of the ledger or log-

backed map containing the requests (which are encrypted under their public keys)

and performing their analysis. Requests that cannot be decrypted can be classed as

invalid and reported. The same argument can be used for users performing check.

5.6.3 Goal T 3: verifiability of inputs to audits

In the case of a user performing monitor, we again have that the user has a cor-

rect and complete view of the log by following through the arguments previously

presented. A malicious auditor could nonetheless perform publish maliciously, pub-

lishing incorrect statistics or the wrong dataset, but this would be detected by a user

performing monitor. A user that was included in the used dataset D used can check

5.6. Achieving Transparency and Privacy Goals 95

the integrity of the transformed dataset Dpriv, identifying their shares using the share

identifier derived from their common identifiers and checking that they reconstruct

their original record.

5.6.4 Goal T 4: verifiability of published audits

Using Dpriv, any user can compute the same statistics that are contained in the pub-

lished audits in the way that was described in Section 5.4.3. If the results are accept-

ably close then they can conclude that the statistics computed on D were correctly

computed.

5.6.5 Goal T 5: transparency of the system

All the information that auditors require is by definition the information that is

logged, which they can access with access only to VAMS, and without interac-

tion with any other party. For users, the information relevant to themselves will be

accessible by finding and decrypting the records relevant to them, which does not

require the help of any other party, and audits must be made available by the audi-

tors, but a hash of Dpriv on the log can assert the integrity of Dpriv. Verifying the

statistics from Dpriv and the inclusion of their data does not require any interaction

either.

5.6.6 Goal P1: The log itself does not reveal any sensitive infor-

mation

The values of the log entries are encrypted so that no party can gain any information

from these unless they have the decryption key controlled by either a relevant audi-

tor or user. Identifying related log entries could reveal sensitive information but log

entries are unlinkable. It is not possible to link either common identifiers (outputs

of a hash function such as SHA-256) or the values of log entries (outputs of a secure

encryption scheme) together.

5.6.7 Goal P2: verifying an audit is privacy preserving

Verifying an audit involves verifying known inputs (i.e., privately known records

in D) and the public outputs (i.e., statistics computed on records that are released).

5.6. Achieving Transparency and Privacy Goals 96

Verifying the inputs only involves checking that known shares in Dpriv reconstruct

a known record in D. No privacy loss can occur by doing this because the record is,

by assumption, already known. We, therefore, focus on arguing that the access to

Dpriv, which is necessary to verify the statistics, does not lead to a greater privacy

loss than the release of the statistics themselves.

The privacy risk associated with the release of Dpriv comes in three forms.

First, the share identifiers used by users to verify the inputs to the statistics

could reveal links between the shares, or the common identifiers used as their inputs.

For this, we rely again on the security of the hash function used to generate the

share identifiers. Taking SHA-256 as providing sufficiently random outputs, it will

not reveal links between the shares, and taking it as pre-image resistant it will not

reveal the common identifiers used as input.

Second, Dpriv itself may leak sensitive information, allowing a record to be

reconstructed or allowing the presence of a record to be inferred more than already

possible from the publicly released statistics.

Third, Dpriv could be used to compute not only the statistics released through

the published audit but also other statistics that were not intended to be released.

To verify univariate statistics, Dpriv needs only to contain single element shares

so Dpriv can only be used to compute univariate statistics. Moreover, if some ele-

ments of the records in D were considered too sensitive to publish statistics about,

they can simply be excluded from Dpriv without affecting the ability of users to com-

pute the statistics that were published. This means that only the published statistics

and their inputs can be verified, so there is no risk of privacy loss from allowing the

statistics to be verified.

In the case of multivariate statistics, we rely on the fact that generating Dpriv

incurs only a small expected privacy loss (Theorem 2) and that, given Dpriv, it is not

possible to reconstruct records on the log (Theorem 1). This ensures that publishing

Dpriv does not enable an adversary to infer whether or not a certain log entry was in

D and that given some information about a record in D (i.e., some shares from that

record), the remaining shares cannot be identified using Dpriv.

5.6. Achieving Transparency and Privacy Goals 97

Bounds on ballot reconstruction attacks

Theorem 1. The probability that an adversary who knows α ∈ [1,2k] shares

of a ballot can reconstruct the entire ballot is Pr(Reconstruct)) = (1 −

Pr(Valid)e)(
(2k+1)r−α

2k+1−α
)−1.

Proof. Each element of a share can take the form of a single (i.e., 42 or 24) or a

double (i.e., 44 or 22). Initially, we restrict ourselves to ballots of one element,

so a share simply corresponds to an element. Given a ballot of n = 2k+1 elements,

it must contain s ∈ [1,k+ 1] singles that correspond to the record, and thus s− 1

copies of the other single. The rest of the elements are filled up using k+ 1− s of

each double. The number of permutations, denoted P(s), of a ballot with s singles

corresponding to the record using the standard formula for multiset permutations,

which takes into account repeated elements in a ballot, is given in Equation 5.6.1.

P(s) =
(2k+1)!

s!(s−1)!(k+1− s)!(k+1− s)!
(5.6.1)

To compute the total number of possible ballots B, given in Equation 5.6.2, we

just sum over s to add up ballots corresponding to each number of singles matching

the record and multiply by a factor 2 as ballots are symmetric under an interchange

of singles.

B = 2
k+1

∑
s=1

P(s) (5.6.2)

This result can be used to compute the probability distribution of the shares

by counting their appearances in the (2k+1)B shares that make up all the possible

ballots. This amounts to taking, for each element, the sum of permutations of a

ballot weighted by the number of appearances of that share in the ballot, and tak-

ing into account the fact that doubles appear the same amount of times in ballots

corresponding to either record, and singles appear either s or s−1 times depending

on whether they match the record. We denote the number of 42, 24, 44 or 22

shares by S42, S24, S44 or S22, which are given in Equations 5.6.3 and 5.6.4. The

probability of each share, given in Equations 5.6.5 and 5.6.6, is then obtained by

5.6. Achieving Transparency and Privacy Goals 98

dividing the number of shares for each form by the total number of shares.

S42 = S24 =
k+1

∑
s=1

(2s−1)P(s) (5.6.3)

S44 = S22 = 2
k+1

∑
s=1

(k+1− s)P(s) (5.6.4)

Pr(42) = Pr(24) =
S42

(2k+1)B
(5.6.5)

Pr(44) = Pr(22) =
S44

(2k+1)B
(5.6.6)

With the probability distribution obtained we can obtain the probability

Pr(Valid), given in Equation 5.6.7, of the event V that occurs when randomly cho-

sen shares form a valid ballot, by summing over the possible ballots weighted by

the probability of each share. More generally, when shares involve e elements the

probability is Pr(Valid)e.

Pr(Valid) = 2
k+1

∑
s=1

P(s)Pr(42)s Pr(24)s−1·

Pr(44)k+1−s Pr(22)k+1−s

(5.6.7)

The above is the probability of success for a weak adversary that starts with

no prior knowledge and wants only to reconstruct a ballot, regardless of whether it

belongs to someone. An adversary that knows up to α ∈ [1,2k] shares of a ballot

and wishes to figure out the last shares required to reconstruct that ballot chooses

2k+ 1−α other shares from the dataset, giving
((2k+1)r−α

2k+1−α

)
possibilities, where r

is the number of records from which we subtract 1 as there must be at least one

valid ballot. This gives Equation 5.6.8, which expresses the probability of success

Pr(Reconstruct) of that adversary.

Pr(Reconstruct)) = (1−Pr(Valid)e)(
(2k+1)r−α

2k+1−α
)−1 (5.6.8)

5.6. Achieving Transparency and Privacy Goals 99

Table 5.3: Upper bounds on the number of elements in 3Ballot and 5Ballot shares such that
the probability of a successful reconstruction is less than 0.01%. The numbers
in brackets next to the scheme indicate the number of shares known to the ad-
versary and the numbers in brackets next to the number of elements indicate the
probability of success.

Scheme 10 users 100 users 1000 users 10 000 users

3Ballot (1) 3 (3 ·10−5) 6 (5 ·10−13) 10 (6 ·10−10) 14 (1 ·10−7)
3Ballot (2) 1 (8 ·10−5) 2 (2 ·10−12) 4 (2 ·10−10) 6 (5 ·10−9)
5Ballot (1) 6 (4 ·10−6) 11 (5 ·10−20) 17 (3 ·10−12) 23 (2 ·10−13)
5Ballot (4) 1 (5 ·10−5) 2 (3 ·10−9) 3 (2 ·10−17) 5 (3 ·10−7)

Table 5.3 gives an upper bound on elements that can be included in shares while

maintaining a probability of a reconstruction attack under 0.01 when an adversary

knows one share or all but one share. Different bounds can be chosen depending on

the acceptable probability of a reconstruction. In practice, only a few elements may

be relevant to the results of an audit or study, and only those need to be published

for the relevant statistics to be publicly verifiable.

It is also important to note that we have modelled an attacker who completes

a partial ballot by picking random shares in Dpriv. In reality, an attacker may of

course have better chances of reconstructing a ballot by inferring the remaining

shares, particularly if they already know most of the ballot’s shares, but this is done

regardless of the availability of Dpriv.

Finally, we have assumed statistical independence between elements, which

may not always be true. ThreeBallot with correlated ballots was studied by

Strauss [75] who showed that even heavily correlated elements had only a minor

effect on the security of the scheme.

Bounds on the expected privacy loss from membership of Dpriv

To quantify the loss of privacy from membership of D and, therefore, the published

Dpriv, we consider the privacy loss variable L θ

M(D),M(D′), defined in Equation 5.6.9.

This variable quantifies the privacy loss incurred by observing an output θ of the

mechanism M, based on how much more (or less) likely that output is when M takes

D as input rather than D′.

5.6. Achieving Transparency and Privacy Goals 100

L θ

M(D),M(D′) = ln
(

Pr[M (D) = θ]

Pr[M (D′) = θ]

)
(5.6.9)

If M satisfied the definition of differential privacy, this would be equivalent to

saying that the privacy loss variable would be bounded [302]. MultiBallot, however,

cannot satisfy differential privacy because the share counts (which would define

Dpriv) that result from running M on D or D′ cannot ever match unless D = D′. This

is because the share counts of ballots generated from different elements cannot be

equal.

We, therefore, define in Definition 2 a relaxed alternative to differential privacy,

replacing the distribution over outputs with an expected output. As we will show in

Theorem 2, MultiBallot satisfies this definition such that given two datasets of the

same size, D and D′, differing in one entry, the expected outputs of Mn running on

either database remain close.

Definition 2 (ζ -expected privacy loss). A randomized algorithm M with domain

N|χ| has a bounded expected privacy loss if given two input databases D, D′ ∈ N|χ|

where D and D′ differ only in one element, there exists ζ ∈ R such that

ζ ≥ ln
(
E[M(D)]

E[M(D′)]

)
. (5.6.10)

As in the case of differential privacy, ζ -expected privacy loss also provides

group privacy.

Lemma 1 (Bounded expected group privacy loss). Let D and D′ be two databases

that differ in e elements. If a randomized algorithm M satisfies bounded expected

privacy loss, then we have that

eζ ≥ ln
(
E[M(D)]

E[M(D′)]

)
. (5.6.11)

Proof. Iterating over Definition 2, if M has bounded expected privacy loss then the

expected privacy loss due to any single element on the output of M is bounded by

ζ . Thus, the impact of any e elements is bounded by eζ .

5.6. Achieving Transparency and Privacy Goals 101

We now prove in Theorem 2 that Multiballot satisfies this definition and com-

pute values of zeta for different database sizes (|D| = 10,100,1000,10000) and

schemes (3Ballot, 5Ballot).

Theorem 2. The MultiBallot share generation mechanism Mn : D 7→ Dpriv satisfies

ζ -expected privacy loss with ζ = ln
(

|42|Dpriv

|42|Dpriv
−∑

k+1
s=1 Pr(s·42)

)∣∣
r42=0,r24=r

.

Proof. Consider two databases D and D′ that contain r single element records and

differ in one record. Without loss of generality, we take D to contain rD
42 records

of the form 42 and rD
24 records of the form 24 and D′ to contain rD′

42 = rD
42−1

records of the form 42 and rD′
24 = rD

24+1 records of the form 24.

Our aim is to determine and compare the share counts in Dpriv←Mn(D) and

D′priv←Mn(D′). Counting the different shares in Dpriv amounts to considering the

probability that the ballot generated from a record will have s shares of one form.

This is given by the number of ballot permutations for a given s over all possible

ballots for that record, as expressed in Equation 5.6.12. Summing over s gives the

expected count for each share of ballots generated from a record, which we denote

|share|record . (The same analysis holds for D′priv.)

Pr(s · (share = record)) =
2
B

P(S) (5.6.12)

|24|24 = |42|42 = rD
42

k+1

∑
s=1

Pr(s ·42)s (5.6.13)

|42|24 = |24|42 = rD
42

k+1

∑
s=1

Pr(s ·42)(s−1) (5.6.14)

|44|24 = |44|42 = rD
42

k

∑
s=1

Pr(s ·42)(k+1− s) (5.6.15)

|44|24 = |22|42 = rD
42

k

∑
s=1

Pr(s ·42)(k+1− s) (5.6.16)

Adding the contributions from all the records together gives the total expected

share count for each type of share in Dpriv.

5.6. Achieving Transparency and Privacy Goals 102

|42|Dpriv
= rD

42

k+1

∑
s=1

Pr(s ·42)s

+ rD
24

k+1

∑
s=1

Pr(s ·24)(s−1)

(5.6.17)

|24|Dpriv
= rD

42

k+1

∑
s=1

Pr(s ·42)(s−1)

+ rD
24

k+1

∑
s=1

Pr(s ·24)s

(5.6.18)

|22|Dpriv
= |44|= rD

42

k

∑
s=1

Pr(s ·42)(k+1− s)

+ rD
24

k

∑
s=1

Pr(s ·24)(k+1− s)

(5.6.19)

We obtain a similar result for D′priv using the fact that rD′ = rD′
42−1.

|42|D′priv
=
(
rD
42−1

) k+1

∑
s=1

s ·Pr(s ·42)+

(
rD
24+1

) k+1

∑
s=1

(s−1) ·Pr(s ·24)

= |42|Dpriv
−(

k+1

∑
s=1

s ·Pr(s ·42)−
k+1

∑
s=1

(s−1) ·Pr(s ·24)

)

= |42|Dpriv
−

k+1

∑
s=1

Pr(s ·42)

(5.6.20)

|24|D′priv
= |24|Dpriv

+
k+1

∑
s=1

Pr(s ·24) (5.6.21)

|22|D′priv
= |22|Dpriv

(5.6.22)

|44|D′priv
= |44|Dpriv

(5.6.23)

Given the expected share counts in Dpriv and D′priv that we have derived, we

can now compare them to obtain a bound ζ on the expected privacy loss.

5.7. Implementation and Performance 103

Table 5.4: Values for the expected privacy loss parameters ζ and eζ for different sizes of D.
We take values of e equal to the safe number of elements against reconstruction
attacks taken from Table 5.3.

Scheme |D| ζ exp(ζ) eζ exp(eζ)

3Ballot 10 0.36 1.43 1.08 (e = 3) 2.95
3Ballot 100 0.03 1.03 0.18 (e = 6) 1.2
3Ballot 1000 0.003 1.003 0.03 (e = 10) 1.03
3Ballot 10,000 0.0003 1.0003 0.0042(e = 14) 1.0042

5Ballot 10 0.1335 1.143 0.801(e = 6) 2.23
5Ballot 100 0.0126 1.0127 0.1386 (e = 11) 1.149
5Ballot 1000 0.00125 1.00125 0.02125 (e = 17) 1.0215
5Ballot 10,000 0.000125 1.000125 0.002875 (e = 23) 1.0029

ζ = max
s∈shares

ln

(
|s|Dpriv

|s|D′priv

)

=maxln

(
|42|Dpriv

|42|D′priv

)

=maxln

(
|42|Dpriv

|42|Dpriv
−∑

k+1
s=1 Pr(s ·42)

)

= ln

(
|42|Dpriv

|42|Dpriv
−∑

k+1
s=1 Pr(s ·42)

)
∣∣

r42=0,r24=r

(5.6.24)

The final result from Equation 5.6.24 can be easily computed and is given for

different values of |D| in Table 5.4.

5.7 Implementation and Performance

We evaluate VAMS by comparing two implementations of the log based on HLF

and Trillian (the code for which will be open-sourced after publication) and showing

that statistics can be accurately verified with MultiBallot. Both log implementations

5.7. Implementation and Performance 104

Figure 5.4: The HLF-based implementation.

are evaluated on very modest (and cheap) Amazon AWS t2.medium instances.4

5.7.1 Evaluating Hyperledger Fabric and Trillian based logs

Hyperledger Fabric based log

For our HLF-based log, we set up a test network of seven machines that represent

four peers (an agent, a data provider, a user, and an auditor), an ordering service (an

Apache Zookeeper service and a Kafka broker), and a client from which commands

are sent. Log entries can be retrieved by querying specific common identifiers, and

a key history function is also available to retrieve the state updates (i.e., transactions

on the underlying blockchain) of a log entry. The execution of commands on the

HLF network is summarized in Figure 5.4.

In this implementation, all peers are connected to one channel and there is one

chaincode containing four functions that update the state of the ledger (as part of

request), retrieve a range of key values (as part of audit), retrieve values for specific

keys (as part of check) and retrieve a key’s history (as part of audit and check).

Thus, auditors or users can check the transactions that updated the value of

a key and easily determine the agent responsible for the update, as they will have

4Each instance has 2 vCPUs and 4GB of memory and is running Ubuntu Linux 16.04 LTS with
Go 1.7, docker-ce 17.06, docker-compose 1.18, and Fabric 1.06 installed

5.7. Implementation and Performance 105

Figure 5.5: The Trillian-based implementation.

endorsed (i.e., signed) the transaction. Endorsement policies can require multiple

signatures so they could hold multiple parties accountable. For example, if data

providers were considered responsible for accepting invalid requests, they could be

required to sign the corresponding request transactions. An ordering service of spe-

cific peers (e.g., auditors) could also be used to detect and flag invalid requests as

they are initially processed (and endorsement policies are checked) before commit-

ting the requests. These are not present in our implementation, but give an idea

of what improvements may be possible as Hyperledger Fabric undergoes continued

development and implements further cryptographic tools.

Trillian based log

Our second implementation of the log, illustrated in Figure 5.5, is based on Tril-

lian’s verifiable log-backed map. The map server (VAMS’s log) monitors the log

of updates for new entries and updates the map according to the new entries – com-

mon identifiers are used as the map’s keys. It then periodically publishes signed map

heads on the second verifiable log, solely responsible for keeping track of published

signed map heads.

To perform check, users can query the map to efficiently check their possible

common identifier values. The map will return a Merkle proof of non-inclusion for

common identifiers that do not map to requests (i.e., the common identifier maps to

0), or a Merkle proof of inclusion for requests that the common identifiers do map

5.7. Implementation and Performance 106

Table 5.5: Micro-benchmarks of basic operations for the Hyperledger Fabric and Trillian
based implementations. The maximal throughput values are given for a batch
size of 1 in the HLF case and a batch size of 300 in the Trillian case.

Measures HLF Trillian

State update (average over 500 operations) 65ms 35ms
Request retrieval (average over 500 operations) 66ms 14ms
Max throughput 40 102

to. Auditors performing audit can in turn check that the map is operated correctly

by replaying all log entries, verifying that they correspond to the map heads on the

second verifiable log.

Performance evaluation

Table 5.5 presents benchmarks for state updates, state retrievals, and the maximal

throughput for each system with a batch size of one. In both cases, the average for

each operation is a few dozen milliseconds. For the HLF system, the results include

the time required to create and submit 500 blocks; chaincode execution alone is

under 10ms. For state retrievals, HLF allows values to be retrieved for a range of

keys. This operation scales linearly with the number of values retrieved and only

requires one transaction.

Table 5.5 also includes the maximal throughput, which is 40 requests per sec-

ond for the HLF system and 102 requests per second for the Trillian system. Fig-

ure 5.6 shows the throughput for different batch sizes. For the HLF-based log, the

highest throughput is observed for smaller batch sizes. The bottleneck is simply

the client sending requests. For the Trillian-based log, the batch size determines

how many items at a time the map servers retrieve from the log to update the map’s

key values, until around batch size 300. The bottleneck is then the number of keys

updated by the map server per second, and throughput levels out.

A greater throughput can be achieved with a larger batch size but having re-

quests appear on the log sooner can be advantageous (e.g., in the case of urgent

requests). In that case, a lower batch size is preferable, or a batch time-out that

would ensure a request will appear after a time limit if the batch size limit is not

5.7. Implementation and Performance 107

0 50 100 150 200 250 300 350
Batch size

30

40

50

60

70

80

90

100

110
Th

ro
ug

hp
ut

 (r
eq

ue
st

s/
se

co
nd

)
Trillian
HLF

Figure 5.6: Throughput of both logs for different batch sizes.

reached.

Practically speaking, for example in the case of law enforcement access to

communications data, the IPCO reports about 800000 requests for communication

data per year in the UK [301] or about 1 request every 9 seconds assuming that

requests happen during work hours. (There are no equivalent publicly available

statistics for other settings.)

A HLF-based log capable of 40 requests per second, placed at the interface

for law enforcement (standardized by ETSI TS 103 307 [294]) would be more than

sufficient, with an average waiting time of 25 ms assuming Poisson-distributed re-

quests. For a Trillian-based system with 102 transactions per second, the average

waiting time would be 10 ms.

Trade-offs

Trillian has a higher throughput as no consensus is required among different nodes

to agree on the ordering of transactions, and better user auditability as when a user

5.7. Implementation and Performance 108

queries the map server for an idc, the map server returns a Merkle proof of the key

and value being included in the map. The key history function of HLF does not

provide a cryptographic proof, so replaying the entire blockchain can be necessary

to verify the inclusion of a key and value. Users could however outsource this task

to a data broker.

HLF supports flexible chaincode policies to determine write access to the log

and comes with built-in authentication and PKI services. However, this means that

users must submit queries to audit the log using a pseudonymous identity. If they

used the same identity for multiple queries, their common identifiers could be linked

together. Authentication must be done separately in Trillian.

The two systems also differ in their architecture. HLF is decentralized (al-

though it is permissioned) whereas Trillian is centralized. A decentralized approach

is appealing because it reduces the trust required in single entities to maintain the

log. In practice, however, there is only one organization that legitimately has rea-

son to write records for a particular business relationship. Users will mostly only

have a single data provider for a service, which may lend itself more towards the

centralized approach.

Table 5.6 summarizes the features of both implementations. Ultimately, Tril-

lian is easier to deploy and has less setup than HLF, which requires the setup of a

network of multiple nodes to act as peers, and the maintenance of an identity ser-

vice to allow nodes to interact with the network. HLF and other blockchain-based

approaches may be preferable if an organization is already using the technology for

some other purpose.

5.7.2 Evaluating the verification of statistics with Multiballot

The simplest case when verifying statistics is the univariate case. In this case, the

exact counts for each value of every element are preserved, so statistics can be re-

computed with 100% accuracy. This means that for applications like the IPCO re-

port on law enforcement access to communications data [301], every statistic could

be verified using our scheme. We, therefore, focus on the more complicated case of

univariate statistics for the rest of this section.

5.7. Implementation and Performance 109

Table 5.6: Summary of supported (full circles) and partially supported (half-circles) fea-
tures of the HLF and Trillian based logs.

Features HLF Trillian

User privacy
Agent privacy G#
Data provider privacy G#
Statistical privacy
User auditability G#
External auditability
Verifiability
Access control G#

Our evaluation measures the accuracy of the association rule metrics computed

on Dpriv. For our experiments, we generate multiple synthetic datasets that follow

the structure of D described in Section 5.5, with several frequent element sets [303].

We mine these for association rules using the Apriori algorithm [304], identifying

frequent elements in the dataset and extending them to larger element sets for as

long as the element sets appear frequently enough in the dataset. We then compute

the support and confidence measures on Dpriv for the previously extracted element

sets, and compare those values with the reported values for the same element sets

on D. We use the percent error %Err, defined in Equation 5.7.1, to measure the

disparity between statistics computed on D (the ground truth value, GV) and Dpriv

(the measured value, MV).

%Err =
|MV −GV |
|GV |

·100 (5.7.1)

We opt to use synthetic datasets to evaluate MultiBallot, by simulating scenar-

ios with a known ground truth rather than relying on sanitized public datasets for

which the ground truth is unknown. We also verify our results using commonly used

public datasets, such as the Extended Bakery dataset [305] and the T10I4D100K

dataset [306]. In all our experiments (repeated 100 times) we measure the error for

both the support and the confidence metrics. Because these are identical, however,

we only include the graphs for support here.

5.7. Implementation and Performance 110

Our first experiment studies the percent error for the support over two elements

when varying the number of rule occurrences for a dataset of 1M records. Figure 5.7

shows the results in the case of 3, 5, 7 and 9Ballot. Element sets that occur less often

are prone to higher percent error, with a high variance in the reported support values.

This is expected for rules with very low support as, for example, observing a rule

twice in Dpriv when it occurs only once in D gives a percent error of 100% despite

the practically meaningless difference. As element sets become more frequent (up

to around 11%), the percent error (< 2%) and the variance both shrink. As the

difference in percent error between MultiBallot schemes also shrinks we focus on

the results for 3Ballot in the following experiments.

Our second experiment studies whether the accuracy for an element set de-

pends on the number of times the element set occurs, or its occurrences relative to

the overall number of users (i.e., support). We generate four datasets of size 1k, 10k,

100k, and 1M, and pick five element sets with support 0.1, 0.3, 0.5, 0.7, and 0.9,

from each dataset. The percent error (shown in Figure 5.8) shrinks as the support

increases, but the absolute size of the element set plays a bigger role in the accuracy

of the statistics. In the cases of the 100k and 1M user datasets, the support has only

a minimal effect on the accuracy. Our results are consistent with those of Blum et

al [307].

Our third experiment evaluates MultiBallot for different element set sizes us-

ing a synthetic dataset of 100k users. Figure 5.9 shows that accuracy is sensitive to

increases in the number of elements. This is expected as the scheme probabilisti-

cally estimates the field values of the original record based on the observed shares,

and the inference error for each field adds up with the number of elements.

Our results show that, based on the type of statistics published by the

IPCO [301], MultiBallot can provide publicly verifiable statistics in the context of

law-enforcement access to telecommunications data.

To evaluate the applicability to healthcare data, we consider two types of stud-

ies: studies on genes and protein networks, and epidemiology studies. In stud-

ies on genes and protein networks, datasets commonly contain between 100k and

5.7. Implementation and Performance 111

0.004373 0.011927 0.112724
Support

0

100

200

300

400

500
Pe

rc
en

t E
rro

r

3Ballot
5Ballot
7Ballot
9Ballot

Figure 5.7: Percent error for the support over two elements as rule occurrences vary in the
case 3, 5, 7 and 9Ballot.

a few million records, with a support threshold usually around 0.5%. In most

cases, valid association rules are composed of only two elements and their sup-

port is greater than the minimum threshold. (The minimum threshold is relevant

only during the rule-mining phase.) In the verification phase, the users compute

measures over the relationships that are reported by the researcher as strongly asso-

ciated [308, 309, 310, 311].

In epidemiology studies, the average element set size is 3, with a minimum

support of around 1%. However, the support of relevant element sets identified is

much higher and ranges from 1% to 16%, and datasets contain between 10,000 and

5.8. Deployability 112

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Support

0

5

10

15

20
Pe

rc
en

t E
rro

r
1k Records
10k Records
100k Records
1M Records

Figure 5.8: Percent error for elements that appear with varying frequency in datasets with
different number of users, using 3Ballot.

250,000 records [312, 313, 314]. Our analysis of MultiBallot shows that acceptable

accuracy can be obtained for such studies of healthcare data.

5.8 Deployability
For a system like VAMS to be deployed, agents and data providers would need

to implement the necessary infrastructure. They may do so as part of transparency

initiatives to increase public confidence [315]. As we have shown in the benchmarks

presented in Section 5.7, this may be cost-effective as VAMS can achieve good

enough performance on very cheap hardware.

Parties may also implement VAMS to allow them to demonstrate that data they

submit as evidence in legal proceedings has not been tampered with. Alternatively,

they may have a statutory obligation to provide transparency. For example, compli-

ance with ETSI requirements may be a condition of providing a telecommunication

service. Such standards do include provisions for requiring that access to personal

5.9. Conclusion 113

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Support

0

2

4

6

8

10

12

14

16
Pe

rc
en

t E
rro

r
2 elements
3 elements
4 elements
5 elements

Figure 5.9: Percent error for element sets of varying size that have the same support, using
3Ballot.

data is auditable and that the authenticity of data can be established [294].

In the UK, the IPCO can require that public authorities and telecommunica-

tion operators provide the commissioner’s office with any assistance required to

carry out audits, and this could include implementing IT infrastructure [216, Sec-

tion 235(2)]. Another possible route for imposing a statutory requirement to provide

transparency could be through enforcement action of a regulator such as the Federal

Trade Commission or a data protection authority. NGOs that currently work with

transparency as an objective (e.g., make Freedom of Information requests) could

also have an interest in maintaining and operating a system like VAMS by, for

example, hosting log servers and serving as data brokers or auditors.

5.9 Conclusion
We have proposed a system, VAMS, which achieves our transparency and privacy

goals. Our work shows how existing transparency overlays used to provide tamper-

5.9. Conclusion 114

evident logging can be combined with our log entry tagging scheme and MultiBallot

to support publicly verifiable individual and population level transparency about

access to data requests. Our evaluation of two implementations of VAMS shows

that the system also meets realistic performance requirements in practice, and not

only on paper.

Our results illustrate that the current framework for requesting data can be

greatly improved to benefit all parties involved. We have given two example use

cases in Section 5.1 to illustrate how VAMS could be used. Its design does not

depend on any particularities of these use cases so it could therefore be applied

more generally. VAMS does not have to replace any existing component in the

workflow of an organization. Instead, it serves as an overlay that can be used to

achieve both transparency and privacy goals.

Chapter 6

Transparency, Compliance, and

Contestability When Code Is Law

6.1 Introduction

Computer systems now have a broad, and increasing, role in people’s lives, even

when they do not interact with or have any privilege over these systems. The code

that makes up these systems defines what these systems do and, therefore, the norms

that they apply when functioning. The impacts of applying these norms can be neg-

ative and unfair, because they result from systems that are flawed (e.g., unreliable

or discriminatory), or that, by optimising certain performance metrics at the cost of

fairness, welfare, and other values, produce harmful externalities.

The harms of such systems are reserved for those that are subject to the sys-

tem, and may not affect the entities that design and operate these systems – they

may even benefit in some cases. These entities concern themselves with enterprise

risks (liabilities) rather than societal risks (externalities), leaving the public which

has little recourse to mitigate these harms to deal with them. Moreover, system

faults that cause harm can happen silently in the sense that it is not always clear to

someone with no control over the system that a fault has occurred (even if the vic-

tim might suspect that it is the case). This makes dealing with this source of harm

difficult.

Security, which deals with ensuring that systems function as intended, should

6.1. Introduction 116

prevent many of these harms, but because of the internal focus on enterprise risks,

it can fail to prevent issues for the public. The law and the legal system are the

recourse for individuals who deem they have been harmed, allowing victims of

harm to be compensated, and misbehaviour that results in harm to be punished and

disincentivized.

When dealing with harm that result from the application of code, both of these

fields should come into play. Law should ensure that victims of code-enabled harm

should be able to contest the systems that cause these harms. Security should ensure

that people should not fall victim to flawed systems, and provide evidence that a

system is (un)reliable.

In practice, however, this currently does not work. There are widespread issues

with people suffering from flawed systems that have been applied to determine,

among other applications, entry to buildings via facial recognition, jail sentences,

and so on. Systems evolve quickly and the law (and security although it moves

quicker than the law) has not kept up with the application of technology to these

aspects of our lives, allowing harm to occur without sanction, and making it hard

for victims of harm to contest the application of code-enforced norms that have

caused harm.

To deal with this issue, the idea of algorithmic accountability, which studies

how to design ways of making algorithms accountable, has gained popularity. In

line with this field of work, this chapter works towards addressing the issue of rec-

onciling the use of security mechanisms that can assert the behaviour of a system

with legal processes that can be used to contest the norms enforced by a system.

6.1.1 Outline of the Chapter

We begin with the idea of norms, misbehaviour, how legal processes and security

mechanisms work as two ways of dealing with misbehaviour, and the interaction

between these two approaches in Section 6.2.

Looking at this through the lens of code as law and digisprudence in Sec-

tion 6.3, we argue both the need for secure accountability mechanisms and how

they must be designed to make them useful as tools to contest code-enforced norms,

6.2. Preventing Misbehaviour Through Legal Processes and Security Mechanisms117

which we expand on in Section 6.4.

This allows us to compare different approaches to auditing in Sections 6.5,

where we make the case for transparency enhancing technologies against less trans-

parent forms of audits based on assurances of compliance with norms. We illustrate

this through two examples based on recent court cases that involved Post Office in

the United Kingdom and Uber in the Netherlands.

We also discuss some practical considerations that relate to electronic evidence

in Section 6.6, balancing transparency and privacy, and where transparency should

be implemented with respect to the system it acts on.

6.2 Preventing Misbehaviour Through Legal Pro-

cesses and Security Mechanisms

6.2.1 Norms and misbehaviour

Misbehaviour is the action of deviating from a norm. Following Hildebrandt’s dis-

cussion of legal and technological normativity [316], we think of norms as reg-

ulative (mandating, permitting, or disallowing some pre-existing possible action)

or constitutive (defining a possible action). The difference between both can be

thought of in terms of how misbehaviour can occur in each case.

In the case of regulative norms, misbehaviour can occur by deviating from the

regulative norm at hand by performing a disallowed action, which does not prevent

the action from being performed but does entail possible punishment. For example,

a regulative norm may stipulate that car should not be driven over a specified speed

limit. This does not prevent driving a car at a higher speed (this is the driver’s choice

to make) but can lead to penalties enacted by the relevant authority if the speed limit

is exceeded.

In the case of a constitutive norm, deviating entails not performing an action

defined by the norm and, therefore, the expected result of adhering to the constitu-

tive norm at hand does not occur, resulting in a form of failure for the user and the

state of the system remaining unchanged. For example, a constitutive norm may be

the rule that a password must be entered to login into an account. If no password,

6.2. Preventing Misbehaviour Through Legal Processes and Security Mechanisms118

or the wrong password, is entered, then it is simply not possible to login into the

account - the user has no choice but to enter the correct password or they will fail to

login and the state of the system will not change as the user’s status will not change

if they stay logged out.

There is of course the question of who defines what the norms are, and thus

misbehaviour. For computer systems, the system’s code often defines constitutive

norms as it creates actions related to the system that did not exist before the system.

(Different systems may of course share similar mechanisms and even re-use code;

for example, a login mechanism, but logging into one system is not the same action

as logging into another system.) Thus, whoever designs and implements (and in the

case of a data-driven system, trains) the system has significant power to determine

the norms that are put in place by the system.

The code itself is also the result of the social norms and practices of those who

write it. This results in an expected behaviour model (explicitly specified or not)

that the user should follow, with anything that deviates in a relevant way from this

expected behaviour being thought of as misbehaviour. For example, in the US, the

flawed design and training of an algorithm that produces risk assessments used to

help determine whether an imprisoned person should be released resulted in black

defendants being incorrectly labelled as higher risk compared to white defendants

who were incorrectly labelled as lower risk [130]. This determined that being black

constituted a deviation from the expected defendant model and was punished with

harsher sentences – a reflection of a system that already disproportionately impris-

ons black Americans [317].

As we have seen, norms that are put in place by a system, as well as those that

form the context in which the system was created and is operated, influence how that

system functions and the experience of its users. They also influence the way the

system is designed to respond in cases where it determines that users have deviated

or misbehaved in some way. Our interest is in the design of mechanisms for the

mitigation of harm that could result from the use of a system. This too will need to

be informed by an understanding of how norms are put in place in technology and

6.2. Preventing Misbehaviour Through Legal Processes and Security Mechanisms119

how they can be challenged (and changed).

6.2.2 Law based disincentivization and punishment of misbe-

haviour

Law broadly defines the limits of acceptable behaviour and the consequences of

unacceptable behaviour in everyday life. Its purpose is twofold. First, it disincen-

tivizes people from acting in a manner that is defined as unacceptable by the law.

Second, if people nonetheless act in such a manner, the law makes it possible to

punish behaviour defined as unacceptable in law via legal processes that are them-

selves defined in law. The punishment can be financial (e.g., to compensate a victim

following a civil litigation) or time and rights-based (e.g., a prison sentence follow-

ing a criminal prosecution). These processes rely on the existence and availability

of admissible evidence that shows beyond a certainty threshold that the person to

be punished did, in fact, act unacceptably.

Processes are more fundamental to the law than specific laws are themselves.

(Of course, processes are usually defined in the law itself, but we distinguish here

between laws that are applied to determine the resolution of the question that re-

sults in a legal process from the laws determining how the legal process proceeds.)

Although both vary across jurisdictions and are mutable, new laws that determine

acceptable behaviour are introduced and changed much more frequently than, for

example, the processes that are used to adjudicate trials. Moreover, the regular

changes in laws show that they can be contested, as do the interpretation of the laws

themselves, which is determined by courts and may be the subject of legal processes

themselves.

The state institutions that legislate, enforce, and adjudicate laws are typically

well-defined, although they vary across states. It is also possible for other orga-

nizations, such as private businesses, to act as rule makers and enforcers over the

jurisdiction of a system they operate, for example through terms of service agree-

ments, although these may, in turn, be subject to state-enacted regulations and the

states legal system that would handle any dispute.

6.2. Preventing Misbehaviour Through Legal Processes and Security Mechanisms120

6.2.3 Security against threats and a posteriori security

Security, or more precisely information security in our context, works by defining

mechanisms based on a defined threat model. There is no notion of absolute secu-

rity, only security against a given threat model that relies on specified assumptions

about the capabilities of an adversary and the difficulty (in a computational sense)

or cost (in an economic sense) of performing certain tasks.

Traditionally, security mechanisms are constitutive and impose behaviour that

honestly follows a protocol, implying that an adversary cannot possibly misbehave

and break the security guarantees provided by the security mechanism (otherwise

the mechanism would not be secure by definition). For example, a provably secure

encryption scheme that is well implemented cannot be broken by an adversary with

more than a negligible probability (in the formal mathematical sense of the term).

Thus, security mechanisms are very different from how regulative legal mechanisms

function. Misbehaviour cannot happen in principle and, therefore, there is no kind

of accountability process or defined punishment for the adversary.

Not all misbehaviour by individuals or algorithmic systems can be stopped

a priori, however, which has motivated work on security mechanisms designed

instead to detect misbehaviour and produce evidence of that misbehaviour [124].

Moreover, the reliability of preventative security mechanisms must also be empiri-

cally examined on occasion. In the context of this chapter, this type of a posteriori

security mechanism is what we focus on.

An example of this being successfully deployed in practice is Certificate Trans-

parency [172]. This is a now widely adopted [248] system that provides tamper-

evident transparency logs that record the issuance of SSL certificates for websites

by certificate authorities. Certificates are either logged, making them easy to in-

spect, or not logged in which case a browser client that encounters such a certificate

can report it. This allows misbehaving certificate authorities who (on purpose or

due to compromise [242]) emit problematic SSL certificates to be detected, disin-

centivising such misbehaviour or, conversely, incentivising security on the part of

certificate authorities.

6.2. Preventing Misbehaviour Through Legal Processes and Security Mechanisms121

The consequences of misbehaviour that is easily detected can be severe if

sanctions are imposed. A certificate authority that is deemed to have misbehaved

by Google, Mozilla, Microsoft, and other browser vendors may be blacklisted by

their browsers, mitigating the harm done to users, and practically ensuring that the

certificate authority quickly goes out of business. For example, DigiNotar went

bankrupt shortly after being compromised and having its certificates deemed un-

trustworthy [318].

Security mechanisms like Certificate Transparency are defined as technical

mechanisms that record evidence of misbehaviour and, therefore, function more

like regulative mechanisms, there is no built-in notion of accountability process or

punishment. That is left to whoever relies on these mechanisms, such as Google

(who dominates the browser space [209]) and other browser vendors.

Thus, unlike law, it is the technical mechanism that is fundamental here, rather

than the process of dealing with misbehaviour once it is detected. More often than

not, there is no well-defined accountability process and it is instead determined by

power relations around the system.

This implies a distinction between the security of the system (e.g., making sure

that certificates are trustworthy) and the security of the parties in the system. Dig-

iNotar vanished following its security incident, and browser vendors protected their

products and users from future harm, but those affected by illegitimate certificates

before measures were taken were not protected or compensated in any way due to

this mechanism.

6.2.4 Economic considerations

Economics considerations play a role in both cases.

Harms caused by algorithmic systems often do not fall under criminal law and,

therefore, the consequences are primarily financial, which leads to economic con-

siderations of expected costs. As Wu puts it “laws impose costs upon regulated

groups. Those groups that seek to minimize the costs of law face a fundamental

choice between mechanisms of change and avoidance. Both mechanisms have the

effect of lowering the expected costs of law, but the similarities end there. Mech-

6.2. Preventing Misbehaviour Through Legal Processes and Security Mechanisms122

anisms of change (principally lobbying) decrease the sanction attached to certain

conduct and tend to require collective action. Mechanisms of avoidance, on the

other hand, decrease the probability of detection and typically do not require that

groups act collectively, but depend on specific vulnerabilities in the law.” [319].

For example, Google has multiple times paid fines to the European Union that

are greater than many of the contributions to the European Union by member

states [244].

Similarly, the security of systems often relates to the underlying economics of

securing the system [116]. Securing a system has a cost that, economically speak-

ing, is only worth expending if it outweighs the expected loss due to the successful

exploitation of the system by an attacker or, more generally, a system fault. When

the costs of system fault can be passed on to the users who are harmed, there is a

perverse incentive not to expend resources on making the system reliable.

The economic considerations related to both legal mechanisms and security

mechanisms directly relate to each other when we consider cases where a system

can harm users. If that is the case, the legal risk for the system operator is that they

may be legally responsible for the harm done to users by faults in the system. The

European GDPR, for example, makes these regulatory risks real for certain kinds

of data protection failures. In these cases, the economic considerations of expected

costs due to the risk of regulatory non-compliance are the economic considerations

that can favour (or not) the implementation of reliable security mechanisms.

6.2.5 The interaction between security mechanisms and legal

mechanisms

The overlap between legal processes and security mechanisms happens when a

security mechanism is intended to ensure compliance with a legal norm. A common

historical example of this taking place is the repeated attempts to apply copyright

and digital rights management (DRM) to online content, which motivated both tech-

nical work (see, for example, Chapter 24 of Anderson’s book [320]) and legal work

on the interaction between code and law [321].

6.2. Preventing Misbehaviour Through Legal Processes and Security Mechanisms123

This put the focus on two things. First, technology could change the efficacy of

a law and facilitate unwanted behaviour. For example, distributed online file sharing

made it much easier to ignore intellectual property law. Second, technology could

be used to deal with the change in the efficacy of a law by deploying mechanisms

that prevent the unwanted behaviour enabled by technology (e.g., DRM mecha-

nisms).

While security mechanisms and legal mechanisms are both ways of enforc-

ing norms and interact in many situations, they are not interchangeable. Security

mechanisms, in particular a posteriori security mechanisms, are technical mecha-

nisms that enable the collection of evidence. Legal mechanisms are processes of

determining the consequences that should be applied to parties in response to their

behaviour based on evidence related to that behaviour.

Thus, the legal analogy for a posteriori security mechanisms is that of evidence

collection while the accountability process is in the hands of those who can (i) ac-

cess that evidence (which may be determined by technical access control mech-

anisms) and act upon it (which requires agency and authority). Re-iterating the

previous example of Certificate Transparency, while everyone can monitor Certifi-

cate Transparency logs, it is effectively only browser vendors who can act upon the

information they contain and enact some kind of accountability on the misbehaving

certificate authority. Although this may manifest itself through code by, for ex-

ample, blacklisting certificates signed by the misbehaving certificate authority, the

process of accountability is a decision process within the organizations themselves,

not one determined independently by code.

The interaction between security mechanisms and legal mechanisms for ac-

countability is, therefore, centred on how security mechanisms can be leveraged to

serve legal mechanisms.

This interaction is not necessarily frictionless, however, as there can be a “clash

between rules and principles exacerbates the difference in perspective between sys-

tem designers, who favour formal rules, and policymakers, who are more com-

fortable with the situational application of principles” [322]. Unlike Google with

6.3. Accountability Through The Lens of Code Is Law and Digisprudence 124

Certificate Transparency, the legal system and many more organizations do not have

the capacity to both design and make use of technical mechanisms that can support

accountability processes. Without such capacity, however, dealing with systems

that can produce harm is difficult.

6.3 Accountability Through The Lens of Code Is

Law and Digisprudence

6.3.1 Code is Law and Digisprudence

The notion of code as law in academic work goes back to Reidenberg [323] who

noted that “technological capabilities and system design choices impose rules on

participants” and Lessig [324] who framed the issue as “we therefore don’t see the

threat to liberty that this regulation presents”.

The use of code as a part of legal actions existed as transactions tied to contracts

were already being executed through code at that time. Moreover, Szabo introduced

the idea of smart contracts [325] that made explicit the possibility of contractual

transactions that would execute entirely through smart contracts implemented in

code. Smart contracts are now the basis for cryptocurrencies such as Ethereum,

which are essentially decentralized smart contract platforms [35], and law scholars

have studied their role as legitimate legal contracts [326].

More generally, however, code1 that defines the operation of technical systems

forms, like law, a way to regulate the behaviour of people subject to the system.

Subjects of the system in this case include not only people operating the software or

are users of the system, but also those on whom the system can have an effect. For

example, someone who is run over by an autonomous vehicle operating software

that did not determine the vehicle should stop once the person was identified will

be affected by the software operating the car without ever interacting with it or

consenting to be subject to it. This effect can also be mediated by a third party,

including in legal matters, as is the case when judges make decisions based on the
1Here, code should refer to not only the actual code written by a software developer but also its

compile environment because a compiler can interpret code in a way that undoes desired properties
such as constant time execution [327].

6.3. Accountability Through The Lens of Code Is Law and Digisprudence 125

outputs of (generally biased) automated decision-making systems [130].

As Diver [328] suggests, code is not law per se, even if its automation means

that it governs the behaviour of people in the system more effectively, because it

lacks law’s mechanisms of ex-ante legitimation and ex-post remediation. Diver

makes four claims about code, its effect, and its design [328].

First, code can have regulative effects on behaviour that are more pervasive

and direct than law is capable of. Moreover, the regulatory effects of code do not

need to be compatible with law.

Second, norms that regulate citizens, including those that are imposed by code,

ought to be legitimate in that they ensure certain formal qualities in their design.

Third, attention should be paid not only to the legitimacy of code but also to

the legitimacy of the design of code.

Fourth, legitimation of a code-imposed rule must be done at design time be-

cause there is little scope to re-interpret code after the fact.

Dealing with this requires a theory of what constitutes legitimate code that

Diver names digisprudence, which is based on the following affordances: trans-

parency about the provenance, purpose, and operation of code; oversight; choice;

intelligibility supported by delay; and contestability as the overarching con-

cern [328].

6.3.2 Digisprudence and Accountability

Digisprudence as a framework is aligned with the desire for accountability mech-

anisms that can provide the affordances we have just listed, beginning with trans-

parency about the provenance, purpose, and operation of code. Oversight is required

to make use of transparency to apply accountability. Choice is related to the norms

enforced by the system, or simply the choice to be subject or not to these norms,

which requires transparency about these norms and how they are applied in the first

place. Intelligibility and the affordance of delay are, in turn, required for oversight

and choice to take place.

Contestability is less integral to the discourse about accountability. For exam-

ple, Wieringa’s recent systematic review of the field does not mention contestabil-

6.3. Accountability Through The Lens of Code Is Law and Digisprudence 126

ity [96]. Rather, accountability is often focused on whether or not a system has

functioned correctly instead of the legitimacy of the norms the system applies –

“trust but verify” as the saying goes (see Desai and Kroll for example [102]). This

suggests that a choice must be made between wanting accountability for the perfor-

mance of the system (which does not require contestability) or accountability for

the norms enforced by the system (which requires contestability). We return to this

in the next section.

Because the accountability mechanisms we are concerned with here also in-

volve code and, indeed, accountability mechanisms are designed to apply norms,

we must also pay attention to how these affordances are taken into account when

designing and executing accountability mechanisms.

Fundamentally, accountability mechanisms must reveal information about the

system and enable action to be taken based on that information (which may include

legal action or some other process). Thus, they regulate access to information and

the effects of access to that information.

The provenance, purpose, and operation of an accountability mechanism

should make clear what the mechanism is intended to provide accountability for, to

whom, and how. The incentives of the party that designs the accountability mech-

anism are important. An accountability mechanism designed for a system by the

system’s operator that primarily works to prove the correct execution of the system

that, for example, does so in zero-knowledge as suggested by Kroll et al. [101],

may not be considered as legitimate by the public as another mechanism for the

same system that reveals more information about not only the system it provides

transparency for but also itself. For example, a zero-knowledge proof, even if pub-

licly verifiable, that is verified by a judge does not allow for any explanation beyond

“computer says yes” or “computer says no”, which may not be a satisfying expla-

nation for the behaviour of complex systems.

More generally, the assumptions that underpin the design play an important

role because they can determine the legal effect of the use of the accountability

mechanism (e.g., it supports the production of admissible evidence to be used in

6.3. Accountability Through The Lens of Code Is Law and Digisprudence 127

court) but also the type of misbehaviour that it can provide accountability for based

on the threat model (e.g. whether the system operator and code are considered

adversarial to accountability) that determines its security design.

Assumptions about the code that is subject to accountability are also important.

Interpreting code as law generally entails considering code as a form of strong le-

galism, but this assumes that the code is reliable and secure, otherwise its effects can

be bypassed and it fails to demonstrate strong legalism. Accountability mechanisms

must take this into account by not assuming that the code is necessarily reliable and

secure, and by being designed to function independently of the code so that it does

not fail if the code fails.

There should be oversight over the use of accountability mechanisms, to make

sure that they are effective in providing accountability, and that the way they reg-

ulate access to information and the effects of access to that information is aligned

with its design and purpose. Of course, intelligibility (or usability in the context of

designing a secure accountability mechanism) is necessary for this to be possible.

Likewise, choice must be given to be subject to the norms accountability mech-

anisms entail. Either for the system operator whose system will be subject to an ac-

countability mechanism, in the case where there are no regulations requiring its use.

(If there are regulations, there is a notional choice to abide by them and flexibility

in how to implement them.) This point has been made under the guise of protecting

commercially sensitive aspects of the system [102, 101]. This also applies to users

of the system whose information may be revealed as part of transparency.

Contestability also matters because accountability mechanisms should enable

consequences. The fact that, for example, transparency by itself is not always ef-

fective is that it can fail to enable further actions [152, 139]. Thus, it should be

possible to contest accountability mechanisms so that the consequences (or lack

of consequences) can be considered legitimate. A practical example of this is for

mechanisms that serve as evidence producing mechanisms that enable legal dispute,

the admissibility of the evidence produced can be contested according to the norms

set out of law that regulates evidence. We explore this in greater detail in the next

6.4. From Accountability to Contestability 128

sections.

6.4 From Accountability to Contestability

In Section 6.2.5 we highlighted a takeaway from the interactions between security

mechanisms and the law, which is that technology can (i) serve to bypass and (ii)

enforce law. If we take code as acting somewhat like law, this is still true.

Hacking, Privacy Enhancing Technologies (PETs), and Protective Optimiza-

tion Technologies (POTs) [329, 330] show the existence of this interaction in prac-

tice.

Hacking attempts to do something that is not allowed by the norms of the

system. This is often viewed through the lens of criminal hacking, but it can also fall

in grey legal areas [331] or be done to contest norms that are reasonably considered

illegitimate. In general, this is a solution that does not scale well because it can

require technical skills that are not widespread among users, and typically does not

entail any modification of the hacked system that would benefit users other than the

hacker. An example where this is useful, however, is when it prevents the system

from functioning (if this is not outweighed by some benefits the system might bring)

or leads to greater transparency about the system (like whistleblowing) that can be

leveraged to contest the system.

PETs constrain the capability of code that is designed to collect private infor-

mation. For example, end-to-end encryption, which is widely deployed in messag-

ing services, prevents the ability for someone to execute code that would eaves-

drop on a conversation, which would otherwise be possible by default. After more

than twenty years since PETS became an active topic [332], privacy engineering is

now its own discipline [333, 334] backed by data protection regulations (e.g., the

GDPR), although systems still routinely compromise user privacy to satisfy a logic

of information accumulation and surveillance [335].

POTS attempt to overrule the effects of code-driven optimization, allowing

users outside of the system to intervene without requiring cooperation from the

system’s operator. For example, using Sybil devices to generate fake traffic in an

6.4. From Accountability to Contestability 129

area can stop traffic routing apps (e.g., Waze) from routing traffic to the area and

mitigate the negative externalities that would otherwise ensue in said area [329].

There is, however, no guarantee that such interventions cannot in turn be optimized

away by the target system once it is adjusted to take the existence of a POT into

account.

These tools are available to individuals and can be effective (even if only to

a limited extent) against code designed and deployed by states, companies, and

other large institutions, showing that contesting code-imposed norms is sometimes

possible (although these tools are not necessarily accountability mechanisms). Code

not only enforces norms but can also be used to contest and bypass norms, and

the fact that these tools are user-centric distinguishes contestability from traditional

accountability that is centred on the system operator.

When code-imposed norms are discussed and determined to be harmful in

some sense, through the use of secure accountability mechanisms, they can be

changed. Even in the case of code that is intended to provide immutability by

design, such as blockchains, these guarantees are void if other interests are deemed

more important. Following the loss of 36,000,000 ether due to an insecure smart

contract, Ethereum users simply decided to fork Ethereum to revert the situa-

tion [195], creating Ethereum Classic (which did not revert the hack) and Ethereum

(which did). Ethereum, the forked chain that decided that “code is law” was not

worth it at that moment, has since been the dominant chain .

How did this happen? The realization that the loss of funds was (i) of great

value, both financially, and in terms of the ability for users to trust the system with

their funds; (ii) reversible because it was possible to introduce code that would

transfer the stolen funds back to their original owners, at the cost of forking the

chain; (iii) reverting the hack was supported by many powerful members of the

community; for example, Vitalik Buterin, Ethereum’s most important public fig-

ure [336] and idea contributor [337]. Ethereum was, therefore, clearly accountable

to its users who (at least those that had more influence over the community) in turn

were able to contest the norm applied to their ability to recover funds. Moreover,

6.4. From Accountability to Contestability 130

because of the transparency offered by Ethereum, any interested user could see ex-

actly what had happened, what could be done, and what was done in the end.

This example shows that transparency enabled accountability can be used to

contest the effects of code and change them. This result is not necessarily gener-

alizable, however, because it played out in favour of those with disproportionate

power over the system. In many cases where we would like to introduce account-

ability to the extent that norms can be contested, those with power over the system

(e.g., system operators) are not those that wish for the norms to be contested. Rather,

they are those who want to enforce these norms in the first place. This brings back

a common theme with accountability, which is the importance of power relations

around systems.

This should inform how we design accountability mechanisms because, as

mentioned in the previous section, accountability mechanisms can regulate the ef-

fects of access to the information that the mechanism makes available to some. This

is because the format of that information plays a role in how it can be used. If any

aspect of the system is to be contested, therefore, it must be determined how this

will happen.

Some systems, such as Ethereum in the example above, afford more power to

their user communities but this requires a level of decentralized governance that is

rare. For the vast majority of systems, which are deployed by centralized private

entities, there are no governance mechanisms that could allow an individual subject

to the system to systematically influence it. Thus, in this chapter, we focus on

contesting norms enforced by systems through legal processes with the intent of

contesting the formulation of these norms. Although it is not ideal and can fail in

loud (e.g., if there is media attention) and quiet ways (e.g., for groups society does

not care about or actively discriminates against), the legal system is often the best

chance of contesting a system an individual will have. As a result, the format of

the information that accountability mechanisms provide should be usable as part of

public disclosures of information about the system and admissible evidence to be

used in court to support an argument in a dispute about the system.

6.5. Compliance and Transparency Based Auditing 131

6.5 Compliance and Transparency Based Auditing

6.5.1 Verification and compliance based auditing

In theory, systems could be formally verified and, therefore, treated as reliable as-

suming that no design flaws were presented (a strong assumption in itself). In prac-

tice, however, formal verification tools are of limited use because many systems

involve multiple different protocols that interact with each other across different

hardware, software, and network conditions, making formal verification of an en-

tire system unrealistic.

Software is often continuously modified (as well as the operating system it

runs on), in particular for new applications, which can involve millions of lines of

code representing extremely complex protocols, with a non-zero rate of bugs in the

code and logic flaws at the design level. Data is shared across networks operated by

different parties, in varying network conditions (affecting reliability or synchrony

assumptions required by distributed protocol design models), which makes strict

enforcement mechanisms impractical [124]. Even hardware, at a scale at which

some large-scale applications operate, may fail to be reliable for basic tasks such as

encryption and decryption [338].

A weaker form of verification that is more realistic is based on compliance

based auditing that checks the correct execution of a process in a system rather

than the correctness of the system itself. For example, automated tools may work

by checking for compliance with certain norms (e.g., certain specific clauses of

the GDPR [339]). This is limited to cases where the desired norm is assumed,

or simply required by law, which may not always be the case. In practice, many

systems enforce norms that fall under a grey legal area, or like many clauses of the

GDPR, are not related to compliance, system behaviour, or require interpretation,

and cannot be encoded in logic and automatically checked for compliance.

The automated aspects of these tools do not provide any agency to any indi-

vidual that would be harmed by the system, because there is no need for them to

provide access to any information to unprivileged users of the system. For example,

a system operator may be able to show that the system has complied with the de-

6.5. Compliance and Transparency Based Auditing 132

sired norms when it has, but when it hasn’t a user may not be able to generate any

evidence of this. This solution, therefore, benefits honest system operators but does

not necessarily punish those that operate flawed systems.

Because the focus is on compliance with a pre-established norm, it does not

leave much space to discuss the norm itself. A logical compliance test that returns

a boolean pass/fail value will not be able to provide much information about edge

cases or the cause of passes or fails that may be necessary to evaluate the norms, and

the reason that the system satisfies a norm may be that the norm itself is specified

erroneously. Having a human in the loop also brings its own challenges [340], and

may risk the humans in the loop legitimising a system because it passes compliance

checks that do not represent all the harms they may cause.

It is also important that the software be well designed to represent the norm it

wishes to verify and secure enough to operate in an adversarial environment. For

example, Volkswagen developed software that could detect when their cars were

being tested so that they could change their performance accordingly [341].

Hardware that supports trusted execution environments and cryptographic

tools that can be used to verify computations [342] can be applied to verify the

execution of the assurance software can be applied in cases where the threat model

requires it and to permit public verifiability. For example, methods of providing

the public with cryptographic proofs that certain processes have followed have

been proposed, based on zero-knowledge proofs and secure multiparty computa-

tion [18, 17]. Although the outputs of these systems can be verified, their inputs

cannot. Thus, this amounts to assuming honesty on the part of those that control

the inputs and, therefore, that the processes that are meant to be audited have been

followed correctly. This is not an appropriate threat model for many cases where

it can be assumed that processes may not be followed honestly and systems may

be faulty. Moreover, because zero-knowledge proofs obfuscate practically all in-

formation, their use is very limited to investigate misbehaviour that would involve

nuanced details [250].

Finally, as Kim points out [343] transparency and audits are still necessary

6.5. Compliance and Transparency Based Auditing 133

even if assurances exist, because the fault in the system that causes harm may not

be in the code but in the design itself.

6.5.2 Transparency Enhancing Technologies

Transparency Enhancing Technologies, in contrast to compliance based solutions,

focus on making information about the system available rather than evaluating the

system. The evaluation is regarded as another process (which may or may not be

automated) that is therefore more transparent because the information it is based on

is more widely available.

In terms of technical mechanisms, this approach is therefore based on pro-

ducing logs of operations in the system (transparency overlays) for which there

are well-defined cryptographic security models [29] as well as implementations of

reliable logs (e.g., the Certificate Transparency logs). Kroll provides a survey of

traceability mechanisms [161]. Given a log of a program’s actions in the system,

it may also be possible to determine the program actions that were actual causes of

the program deviating from its specified behaviour [344]. Likewise, for machine

learning based systems, it can be possible to quantify the degree of influence of

inputs on outputs of the system and release the information for transparency [345].

Transparency is based on recording and making information available, there-

fore, it does not assume a norm for the system like compliance based solutions.

Thus, it makes it possible to explore what that norm is via the information it makes

available. Moreover, it does so independently of the system’s norm that may have

been specified at its design stage. This is akin to adopting a stronger threat model

that makes fewer assumptions about the system it audits and those that interact with

the system. It can, therefore, identify discrepancies between norms that were de-

sired at the design stage and those that are actually enforced as the system operates.

Transparency can also be more public facing and democratic than compliance

based solutions. First, it is based on releasing information rather than checking it.

Second, a transparency system (e.g., logs) can be maintained by various parties and

relied on by others. Assurance software, however, must be possessed by those who

execute it and are typically not publicly available. A broader audience invites a

6.5. Compliance and Transparency Based Auditing 134

broader critique.

An example comparison between a compliance based system and a trans-

parency focused system can be made in this case. We have already mentioned

the work of Frankle et al. [17], which uses cryptographic tools (zero-knowledge

proofs and multiparty computation) to verify that secret legal processes to authorize

surveillance, for example, have been followed. The output of this solution is a cryp-

tographic proof that processes have been well followed, and statistics about these

processes, but it does not reveal anything else.

VAMS, described in Chapter 5, addresses a similar problem, that of auditing

requests for access to data made by law enforcement. This chapter proposes a solu-

tion that logs (similarly to Certificate Transparency) and releases the log of requests

for access to data with read access reserved to auditors (for all requests) and indi-

viduals (to see requests for their data). This allows publicly verifiable statistics to

the extent that individuals can verify the inclusion of requests for their data in the

computation of the statistics, and recompute the statistics themselves based on a

privacy preserving synthetic dataset.

The first system, proposed by Frankle et al. offers stronger confidentiality

guarantees but is only useful if processes are followed correctly. If they are not, not

much can be learned by design. The second system offers confidentiality guarantees

that are weaker than those offered by zero-knowledge proofs because more infor-

mation is revealed by the release of a synthetic dataset of logged requests. However,

it can be used to identify errors (i.e., deviations from the specified “honest” norm)

and abuse (i.e., the existence of a malicious norm) more effectively, and provide

greater agency for those affected. Thus, if things go wrong, this solution may be

more useful in contesting the system it looks at.

There are, therefore, trade-offs to consider, but if the ability to contest norms is

required then the argument is in favour of transparency that can accurately produce

evidence of the system producing behaviour that does not respect the desired norm,

or correctly enforcing a harmful norm.

6.5. Compliance and Transparency Based Auditing 135

6.5.3 Examples of the usefulness of system transparency in

court cases

Post Office Limited and its unreliable accounting system Post Office Ltd is a

state-owned private company in the United Kingdom (UK) that provides a variety

of services to customers including postal and financial services. Subpostmasters

operate Post Office branches on behalf of Post Office Limited and are responsible

for any losses at their branches.

The accounting at each branch, however, was handled by a centralized account-

ing system named Horizon, which was developed in the nineties. As it happens,

Horizon, like most large IT systems, suffered from bugs that could lead to account-

ing errors. Over the years, Subpostmasters were accordingly requested to cover the

losses or be criminally prosecuted.2

One important factor in these prosecutions was the legal presumption in the UK

that, unless there is evidence of the contrary, the evidence produced by a computer

was reliable. Post Office had access to a Known Error Log but did not disclose its

contents [347], and because evidence was treated on a case-by-case basis, it was

never possible to establish the unreliability of Horizon for a single defendant with

limited resources. Thus, “a subpostmaster could be held responsible for losses they

incurred as a direct result of failing to notice an error in a sophisticated computer

system over which they had no control” [347].

More recently, however, a Group Litigation that allows a collection of cases to

be examined in parallel took place. This allowed subpostmasters to contest Horizon

as a group with pooled funds and more combined evidence to contest Horizon more

effectively. As a result, it was possible to force more disclosures about Horizon that

made it possible to establish that it was unreliable, with forced the government to

put aside hundreds of millions of pounds to cover the payouts in what is considered

the biggest single miscarriages of justice in British history [348].

It is instructive to consider this example, and how similar situations could be

improved because it is a large system but one that is nonetheless less complex than,

2See Nick Wallis’ book [346] on the subject for more details.

6.5. Compliance and Transparency Based Auditing 136

for example, machine learning based systems. It is also a typical kind of system that

people will interact with daily. Many other faulty traditional systems have caused

legal issues [129]. Reasoning about the responsibility of individual bug occurrences

in a system is difficult because if the probability of a bug occurring is similar to the

probability of a user committing fraud then we are left with biases [7].

As the Group Litigation showed, an approach based on transparency of the

know error log and intelligible recordings of the system’s operations could improve

things by making accessible the information that was actually useful in practice [7].

This would make it possible for subpostmasters to (i) be aware of potential bugs

(transparency about the system), (ii) analyse the logs of their system’s operation

(transparency about their interaction with the system), and (iii) have access to ev-

idence that can be used to contest any faults in the system that may occur. More-

over, the security of such a system should be based on a threat model that assumes

Post Office to be adversarial to transparency as they actively hid the contents of the

known error log.

Relying on (zero-knowledge) proofs of correct execution would not solve the

problem entirely because they only apply if the program executed entirely correctly,

but this may not be the case if either the bugs that occur and cause the proof to fail

are not responsible for faults (e.g., misrecording transactions) occurring, or if the

program executes correctly but its logic is flawed. Moreover proving the correct

(perhaps distributed) execution of a large program may simply be impractical. Fo-

cusing on only a small critical component is not enough because if, for example, the

accounting executes correctly but the display is faulty, a subpostmaster might try to

fix the error manually, leading to discrepancies.

Uber’s fraudulent activity algorithm In another case, the Amsterdam District

Court ruled that drivers from the UK were permitted to contest the norms applied

to them by Uber’s system (as well as other similar companies e.g. Ola) when they

were banned from the service for fraudulent activity. Moreover, the court ordered to

provide transparency about numerous aspects of its system, including the data used

by Uber’s algorithm to dismiss the drivers, which was not previously accessible to

6.5. Compliance and Transparency Based Auditing 137

the drivers [349].

The issue for drivers lies in the fact that they are subject to the ratings they

receive from customers and Uber’s system based on these customer ratings and

other factors, which determine the service they receive from Uber and whether or

not they are allowed to drive for Uber. Customer ratings may be biased, however,

based on attributes such as the race of the driver, which then feeds into Uber’s

system determining that the driver should be banned if they fall under a certain

rating. Other surveillance systems used to assess drivers are also in place such as

facial recognition checks that may fail and lead to a driver being kicked off the

platform [350].

Compliance based audits would not achieve much in these scenarios. When

it comes to biased customers, there is no way to assess in advance whether cus-

tomers will be more or less biased, or to produce a facial recognition system that

functions such that there is a negligible probability of failure across all drivers. In-

evitably, transparency will be required and must be available for drivers to allow

them to contest such systems, without first having to go through lengthy, expensive

processes to access the relevant information that is intentionally obfuscated.

While regulations, Article 22 of the GDPR that gives an individual the right not

to be subject to a decision based solely on automated processing in this case, can

enable an order to disclose aspects of the system, mechanisms to execute this are

lacking, and it is not always possible for an individual to know that they are subject

to such a system. There are suggestions for ways to audit the design [351] of AI

systems as well as releasing information about the models themselves [121] and the

datasets that they are trained on [118]. However, these are not designed with a threat

model and, therefore, assume a fairly honest system designer and operator, whereas

companies such as Uber have an incentive to obfuscate how their system functions

to avoid scrutiny, and argue this is necessary for commercial confidentiality and

customer privacy purposes.

6.6. Practical Considerations 138

6.6 Practical Considerations

6.6.1 Electronic evidence

The book by Mason and Seng [203] discusses many issues with electronic evidence

in the legal context and makes clear that the topic touches upon many aspects of se-

curity, not only the authentication (typically handled through electronic signatures)

and integrity of the evidence itself (typically handled through cryptographic hash

functions), but also of the networks over which it is exchanged, and how it is stored.

It also makes clear that when treating software as a witness, it must be taken into

account that software can be written to deceive, as in the Volkswagen emissions

case [341].

More recently, the Post Office case used as an example above has generated

work discussing the presumption of reliability that evidence generated by computers

often enjoy, and the issues this can cause [127, 352, 353, 354]. (Different jurisdic-

tions adopt different standards of course.) This presumption that electronic evidence

is reliable has also facilitated harm in cases where the party producing the evidence

not only knows that it is unreliable, but also that it is essentially fabricated [355],

Related to this is also the necessity for expert witnesses to explain the evi-

dence that is generated, so the explainability of the evidence plays an important

role because the expert witness must be able to understand the evidence themselves

and be able to explain it in a clear way to a judge or jury. Explainability has been

investigated for machine learning based systems, sometimes with emphasis on ex-

plaining single decisions to individual users rather than explaining a system as a

whole, which may be required to establish its reliability. The kind of explainability

that is geared towards engineers [356] of the system may be more useful in this

context, but may also be less accessible by design.

6.6.2 Balancing transparency and privacy

Whenever information that may be sensitive is made available, privacy and confi-

dentiality concerns emerge.

This includes concerns for the privacy of the individuals who may be related to

6.6. Practical Considerations 139

the information that is released. This should be treated with care, using appropriate

sanitization mechanisms; for example, by implementing data minimization and us-

ing differentially private data release mechanisms [54, 11], which are aligned with

regulatory data protection requirements [67, 68]. Because different data carries dif-

ferent privacy risks, and different levels of usefulness in contesting the system, this

is a problem that must be addressed on a case-by-case basis that takes into account

the trade-offs between privacy, the consent of parties that relate to the information

(or other bases for releasing that information), and the information that is necessary

for transparency to be useful.

Often, a dispute may rely on both system-level information (e.g., error rates)

and individual information (e.g., specific system events). System-level information

such as univariate statistics may leak less sensitive information about individuals,

while individual information is naturally more sensitive but may need only be ac-

cessible to the individual in question.

Commercial confidentiality can also be a concern. This motivated the reliance

on tools such as zero-knowledge proofs suggested by Desai and Kroll [102] and

Kroll et al. [101]. Some arguments support the idea of access to the source code of

a system in the case of a dispute about the system [129], and as we have discussed

above, relying on assurances rather than transparency may not enable contestability.

Naturally, in cases where commercial entities benefit from information asymmetry,

they are unlikely to want to provide greater transparency without an incentive or

obligation that would provide trade-offs in favour of transparency. Thus, it may fall

to evolving regulations and technical standards that govern the design and operation

of systems to determine the right balance. As we have seen in the Uber example

above, regulations can already force the disclosure of broad information about the

system, even if they did not require that information to be public beforehand.

6.6.3 A system in one place, transparency in another

Systems are often designed and implemented in one place before being deployed

internationally. Disputes around the system, however, often take place where the

harm caused by the system has occurred, which may not be where the system has

6.7. Conclusion 140

been designed. Thus, transparency around the system, if it is to be useful in a dis-

pute, should reflect the local context of the dispute, rather than the context in which

the system was designed. The importance of the audience of transparency has been

discussed by Kemper and Kolkman [357] and Felzmann et al. [358], highlighting

the need for transparency solutions that reflect the population it interacts with.

6.7 Conclusion

In this chapter, we have argued for the necessity of employing secure accountabil-

ity mechanisms to ensure the legitimacy of computational systems whose code en-

forces norms. In particular, we have argued the need for accountability mechanisms,

based on transparency rather than compliance verification, to enable the ability to

contest the norms that code enforces when these may be illegitimate.

This entails a culture shift to a user-centric notion aimed at giving users the

agency to contest the systems they are subject to through channels such as legal

processes, rather than a technical system-centric notion of accountable systems that

do not entail any change in systems if they are flawed. Contestability is a human

process with a human output, which should address any harm done to a person,

regardless of any changes being made to the system that produced harm in the first

place (even if such changes should also take place).

Because the best mechanisms to contest norms are those that can effectively

pressure system designers or operators to change their system even if they are re-

luctant to do so, such as the legal system, we have analysed technical accountability

mechanisms based on their ability to support the action of contesting computational

systems via legal processes. From this perspective, transparency enhancing tech-

nologies understood as accountability mechanisms that include transparent logs of

a system’s operation, emerge as mechanisms that are more supportive of contesta-

bility than other accountability mechanisms based on providing assurances of com-

pliance with given norms.

While work on designing technical systems has previously predominantly fo-

cused on building systems that match or comply with norms, there is scope to build

6.7. Conclusion 141

upon existing tools to create better transparency enhancing technologies that fill all

the requirements that must for met to effectively enable accountability and, by ex-

tension, the ability to contest and change norms. Thus, this has implications for

developers who wish to produce a change in existing systems and developers of

new systems that may be designed with a model of decentralized governance that

affords broader scope for changing the norms enacted by the system.

While there is justified scepticism of technical solutions to governance or reg-

ulatory issues, work in the field of law and policy that is concerned with the impact

of computer systems should encourage and interact with the development of techni-

cal tools that can support their goals and empower the users that their work aims to

help. Innovative new systems are not the only type of system that can cause harm,

but there is necessarily a lag between technical innovation, the appearance of new

systems, and of any effective governance or regulatory frameworks for these sys-

tems, which can leave users more exposed. Until such frameworks are put in place,

it is all the more important for users to be able to contest the impact new systems

can have, and this can also help guide the development of these frameworks by

exposing system flaws or gaps in existing regulatory and governance approaches.

Finally, rather than simply allowing more legal cases to go forward, trans-

parency and contestability can make security and reliability essential to system op-

erators by making it harder for them to externalize the costs of a faulty system.

Chapter 7

Conclusion

This thesis has evaluated log based transparency enhancing technologies and the

role they can play in making it possible to contest flawed systems and hold operators

of these systems accountable.

First, as Chapter 4 shows, it is possible to systematize log based transparency

enhancing technologies and characterize them based on the mechanisms they re-

quire to operate, and what security means for these mechanisms based on realistic

threat models. For the most part, essential mechanisms like cryptographic logs exist

and are usable. There are already transparency enhancing technologies like Certifi-

cate Transparency and cryptocurrencies that are built using these tools and work,

securely, on a very large scale. This is encouraging and shows that building trans-

parency enhancing technologies, even on a large scale, can be done and can bring

positive change to a system.

Going beyond logs, however, issues quickly start to appear with existing san-

itization, release and query, and external mechanisms. In the case of sanitization,

privacy enhancing technologies are developed with privacy as their first concern,

which creates trade-offs when it comes to satisfying the requirements of trans-

parency.

In the case of release and query mechanisms, not much has been done in prac-

tice beyond querying logs for data (and verifying the inclusion and integrity of data

in a log). Supporting an actual database with fully-fledged query capabilities on top

of a log is something that can be done in theory but has not been done in practice.

143

Likewise, when it comes to integrating with external processes to make use of

transparency enhancing technologies, much can be done in theory but little has so

far been done in practice. Accountability in the Certificate Transparency ecosys-

tem is down to whoever has decision-making power at Google, Mozilla, Microsoft,

Brave, and other browser vendors. Regulations, and the development of trans-

parency enhancing technologies for a broader range of systems, particularly those

with which individuals directly interact, may positively impact this.

Chapter 4, which presents VAMS, illustrates these points quite well. We use

two existing log primitives (HLF and Trillian) to build logs that satisfy the require-

ments of a system meant to provide transparent auditing of access to data records.

Concerning sanitization, however, our MultiBallot mechanism cannot sat-

isfy the requirements of differential privacy, and no existing differentially private

scheme supports the ability to easily find one’s records in a privacy preserving

dataset to verify its inclusion in the computation of statistics for an audit in the way

that MultiBallot does. Thus, we have to recognize the trade-offs made with VAMS

and use this as a starting point to develop better mechanisms that could satisfy all

of our ideal requirements.

Nonetheless, VAMS is an example of how a transparency enhancing technol-

ogy can be built to effectively improve an existing external process, in this the pro-

duction of IPCO annual reports, and potentially extend this to users who could then

also identify when they have been affected by mistakes and act on this information.

With Chapter 6 we address a more general question than how to build a trans-

parency enhancing technology. What is the point of building a transparency enhanc-

ing technology when we could also just verify that a system functions correctly?

The answer lies in the fact that transparency be useful for verifying more than sim-

ply the correct execution of a system, it can also be used to see what norms and

system enforces and how it enforces them. Transparency then makes it possible to

go further than accountability and test the legitimacy of these norms by contesting

them via external processes.

7.1. Open Problems 144

7.1 Open Problems
Requiring transparency The question of how to require any kind of transparency

remains open.

There may be requirements to implement some form of transparency to com-

ply with, for example, ETSI requirements for providing a telecommunication ser-

vice [294], a legal requirement to provide designated auditors with assistance (in-

cluding IT infrastructure) [216], or the tight of access by the data subject to data

held about them by a controller specified in the GDPR [359]. With the noticeable

exception of the GDPR (which is very widespread), however, such transparency re-

quirements are not public facing. Moreover, they are not as broad as what this thesis

would argue for.

Laws and regulations can also work against transparency. Intellectual property

(IP) law, in particular trade secrets that allow information about a system to remain

confidential conflicts with requiring transparency and, as we have argued, an ap-

proach based on zero-knowledge proofs may not be practical or suitable to resolve

this tension.

The argument could be made that any system operator that operates a system

that could cause harm, especially systems that have been shown to have faults and

that have caused harm (or are likely to have done so), should not be able to rely on

IP law for obfuscation – vendors of electronic voting machines that have repeatedly

been shown to have security or reliability issues exemplify this. Of course, many

would argue against this because, as laid out in the introduction, operators of faulty

systems would rather treat system faults as something that can be externalized to

the public rather than a liability.

Thus, there is a debate involving the political and economic aspects of this

question that must be resolved, but transparency must be considered more than it

has been so far given the evidence that systems based on transparency do work (e.g.,

Certificate Transparency and cryptocurrencies).

Implementing transparency Like security and privacy, building transparency sep-

arately on top of an existing system (i.e., as an overlay) may not be as productive

7.1. Open Problems 145

as embedding it into the system itself by design. However, this naturally brings

into question how this would change the workflow of system operators, many of

which have yet to successfully embed security or privacy into their workflow and

who might have a natural reluctance to implement transparency, and how this could

be achieved with existing systems.

Aside from the open problem of requiring transparency, transparency engineer-

ing will have to be developed like security engineering [320] and privacy engineer-

ing [333, 334] before it and, like them, drawing on requirements engineering and

other fields with extensive bodies of work to learn from, as well as developing an

understanding of the contexts in which it is deployed.

Interpreting transparency If transparency is to be useful, it should be possible to

find the evidence required to contest within the information it makes available. In

court, evidence that is hard to interpret may mean relying on an expert witness to

explain the evidence and someone to assert its reliability (e.g., a representative of

the system operator or an expert witness depending on the legal system), but the

focus in this thesis is also in facilitating access to evidence so that it is possible

to get to the courtroom in the first place. It is still possible to rely on an expert

before going to court, but they can also be difficult (and possibly expensive) to

get in touch with without having already started the process of a legal dispute, so

information made available through transparency should ideally be interpretable (at

least to some extent) to anyone.

Starting with code, which is inscrutable to most people, it is unlikely that any-

one who is not experienced with reading code (and the code base of the relevant

system) in the first place will be unable to correctly assess how the code is intended

to function and how it can fail simply by starring at it.

The Heartbleed Bug discovered in the OpenSSL cryptographic library makes

this clear: years of using and occasionally inspecting code does not guarantee the

discovery of one of the most impactful vulnerabilities in the history of a library on

which the modern internet depends [360], even if the open-source nature of the code

did ultimately result in the vulnerability being identified.

7.1. Open Problems 146

Searching for open source code itself is also a problem given the dependencies

between different code bases, even if a software bill of materials (a list of software

ingredients introduced to manage software supply chain risks) may help to outline

these dependencies. GitHub can be thought of as providing a central repository of

open source code that can be browsed and searched, but code is not indexed in the

manner that other topics with centuries of library science devoted to their indexing

are (e.g., the law, despite it’s growing volume), and as a result, searches do not

necessarily provide useful results given all the forks of a particular code repository

(and its dependencies) that may exist, for example.

Going even further, code cannot be interpreted by a human in the same sense

that a legal rule is interpreted (by a judge for example) and this is made more com-

plicated by the role of a compiler in interpreting the code (and compiled code being

even more inscrutable) and the presence of comments added by software developers

to the code, which are not interpreted as code by the compiler, yet indicate what the

code should do and how it is implemented, as well as the runtime environment.

Moving on to outputs, interpreting these can differ based on the existence of

some ground truth.

In some cases, there may exist a ground truth that makes it clear the wrong

output occurred. For example, A-level students in the UK were automatically as-

signed grades in place of having an exam because of the covid-19 pandemic in

2020 and the restrictions that were in place. The assigned grades were computed

such that the grade distribution should match that of previous years, meaning that

students were graded based on the performances of past students rather than their

own and, as a result, some were penalized by a lower-than-expected grade if they

had outperformed the norm. Because teacher predicted grades existed, however, it

was obvious in some cases that students might be harmed by their assigned grades

(e.g., if it meant they would not meet the conditions of their university offer) and

that they could realistically have obtained a higher grade. This lead to protests and

a government u-turn over the use of assigned grades [239]. (The system was not

re-used so nothing was done to fix it.) More generally, in cases where code is used

7.1. Open Problems 147

purely to scale decision-making (e.g., applying a fixed decision tree) it may be fea-

sible for a single or a few instances to go through the rules by hand and determine

what the correct output should have been and interpret the system’s output in that

context.

In other cases, a ground truth may be harder to determine. if the code relies

on large quantities of data and/or produces unexplainable outputs (as most complex

neural networks do for instance), then the code’s execution cannot meaningfully

be compared to a manually computed output. In a legal setting, the presumption

of innocence may also mean that there is no meaningful ground truth without go-

ing through the lengthy legal process that legal technology is deployed to replace.

Interpreting an output may then be a very difficult task.

Undoing harm The key point that this thesis argues for is the idea that it must be

possible to contest the outputs of a system and the effects they may have, particu-

larly when they cause harm. Part of this should be to determine how harm can be

undone.

When code causes harm, the harm is not in the code as it is written and ex-

ecuted, which changes the state of the system but not the state of the individual’s

world, but in the effect that the output of executing the code has, which can change

the state of the individual’s world. It makes sense, therefore, to focus on outputs as

well as the code that produces these outputs.

Undoing harm could, therefore, mean two things. It could mean changing the

code that produces harm, undoing the source of harm and preventing the same harm

from occurring again. More importantly, for a victim of harm, it could mean revers-

ing the state of the system to what it was before the harmful output and reversing

the effect of that output on their life.

For example, a system that determines whether or not someone should be

granted bail could include a function that allows an output to be erased from the

system. In the physical world, such an output could be ignored if it is recognized

as a fault because it only takes effect through other mechanisms such as a judge

refusing to grant bail and law enforcement enforcing the decision. Of course, there

7.2. Closing thoughts 148

could be a cyber-physical system that also includes an automated judge and physi-

cal restraints, in which case the code that produces the output would have a physical

effect, reinforcing the need to keep human decision-making in the loop so that de-

cisions to ignore harmful outputs can be made.

More generally, an error is unlikely to be recognized and ignored. Automated

systems are unlikely to be used if they involve supervision that is roughly equivalent

to the task they are supposed to automate so they are more likely to operate in a

mostly unsupervised way. As in civil litigation cases, compensation to the harmed

individual could be based on the output that determines the harm done to them.

Because harm is often not static in time (e.g., the harm that comes from a refused

bail application increases with each day), the ability to identify and resolve faults,

and the length of time this takes, should impact compensation. Punishment (as in

criminal prosecutions) to the system operator could also be based on how the fault

came to be; for example, because of accidental, negligent, or intentionally harmful

operation of a system that could cause harm, and how it is resolved.

7.2 Closing thoughts

Like most academic work in this field, the hope is that this work can play a part in

making systems better; for example, more secure, with better accountability for the

inevitable flaws in systems, and better processes to deal with the impact of these

flaws on people.

Redmiles, Bennett, and Kohno, have recently published an article that takes a

critical view on power in computer security and privacy, which reflects on how the

top-down power structures that govern systems and society impact how research is

done [361].

It is easy to see this in practice. Funding for research and conferences flows

from big tech companies or government agencies that produce the systems we are

meant to critically analyse. This should include questioning whether a system

should even exist, but can often be replaced by trying to simply mitigate the harms

a system produces by, for example, making it privacy preserving when the lack of

7.2. Closing thoughts 149

privacy is not the primary issue or fairer when there should be no need to classify

and discriminate in the first place.

As stated in the introduction to this thesis, research in information security has

always dealt with issues of power over a system, typically by ensuring privilege

over a system (e.g. through access control mechanisms), and this thesis has consid-

ered the opposite approach. If anything, transparency should allow systems to be

questioned up to whether or not they should exist, and allow us to get a better idea

of how to design systems that should exist.

Bibliography

[1] Alexander Hicks. SoK: Log based transparency enhancing technologies.

arXiv preprint arXiv:2305.01378, 2023.

[2] Alexander Hicks, Vasilios Mavroudis, Mustafa Al-Bassam, Sarah Meikle-

john, and Steven J Murdoch. Vams: Verifiable auditing of access to confi-

dential data. arXiv preprint arXiv:1805.04772, 2018.

[3] Alexander Hicks. Transparency, compliance, and contestability when code

is(n’t) law. In Proceedings of the 2022 New Security Paradigms Workshop,

NSPW ’22, page 130–142, New York, NY, USA, 2023. Association for Com-

puting Machinery.

[4] Sarah Azouvi, Guy Goren, Alexander Hicks, and Lioba Heimbach. Base

fee manipulation in ethereum’s eip-1559 transaction fee mechanism. arXiv

preprint arXiv:2304.11478, 2023.

[5] Sarah Azouvi and Alexander Hicks. Decentralisation conscious players and

system reliability. In Financial Cryptography and Data Security: 26th Inter-

national Conference, FC 2022, Grenada, May 2–6, 2022, Revised Selected

Papers, pages 426–443. Springer, 2022.

[6] Sarah Azouvi and Alexander Hicks. Sok: Tools for game theoretic mod-

els of security for cryptocurrencies. Cryptoeconomic Systems, 0(1), 4 2021.

https://cryptoeconomicsystems.pubpub.org/pub/azouvi-sok-security.

Bibliography 151

[7] Alexander Hicks and Steven J Murdoch. Transparency enhancing technolo-

gies to make security protocols work for humans. In Cambridge Interna-

tional Workshop on Security Protocols, pages 3–10. Springer, 2019.

[8] Sarah Azouvi, Alexander Hicks, and Steven J Murdoch. Incentives in secu-

rity protocols. In Cambridge International Workshop on Security Protocols,

pages 132–141. Springer, 2018.

[9] Patrick McCorry, Alexander Hicks, and Sarah Meiklejohn. Smart contracts

for bribing miners. In International Conference on Financial Cryptography

and Data Security, pages 3–18. Springer, 2018.

[10] Dan Boneh and Victor Shoup. A graduate course in applied cryptography.

Available at https://toc.cryptobook.us/book.pdf, 2020.

[11] Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differ-

ential privacy. Foundations and Trends® in Theoretical Computer Science,

9(3–4):211–407, 2014.

[12] National Institute of Standards and Technology. FIPS 180-4 Secure Hash

Standard (SHS), August 2015.

[13] Law Commission. Electronic execution of documents, 2019.

[14] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge com-

plexity of interactive proof systems. SIAM Journal on computing, 18(1):186–

208, 1989.

[15] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to prove all np

statements in zero-knowledge and a methodology of cryptographic protocol

design. In Conference on the Theory and Application of Cryptographic Tech-

niques, pages 171–185. Springer, 1986.

[16] Saba Eskandarian, Eran Messeri, Joseph Bonneau, and Dan Boneh. Certifi-

cate transparency with privacy. Proceedings on Privacy Enhancing Tech-

nologies, 2017(4):329–344, 2017.

Bibliography 152

[17] Jonathan Frankle, Sunoo Park, Daniel Shaar, Shafi Goldwasser, and Daniel

Weitzner. Practical accountability of secret processes. In 27th {USENIX}

Security Symposium ({USENIX} Security 18), pages 657–674, 2018.

[18] Shafi Goldwasser and Sunoo Park. Public accountability vs. secret laws:

Can they coexist?: A cryptographic proposal. In Proceedings of the 2017 on

Workshop on Privacy in the Electronic Society, pages 99–110. ACM, 2017.

[19] Kenneth A Bamberger, Ran Canetti, Shafi Goldwasser, Rebecca Wexler, and

Evan J Zimmerman. Verification dilemmas in law and the promise of zero-

knowledge proofs. Berkeley Technology Law Journal, 37(1), 2022.

[20] Joshua A Kroll, Solon Barocas, Edward W Felten, Joel R Reidenberg,

David G Robinson, and Harlan Yu. Accountable algorithms. U. Pa. L. Rev.,

165:633, 2016.

[21] Zcash. Parameter generation, 2017.

[22] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scal-

able, transparent, and post-quantum secure computational integrity. IACR

Cryptology ePrint Archive, 2018:46, 2018.

[23] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-quantum

and transparent recursive proofs from holography. In Annual International

Conference on the Theory and Applications of Cryptographic Techniques,

pages 769–793. Springer, 2020.

[24] Sean Bowe, Ariel Gabizon, and Matthew D Green. A multi-party protocol

for constructing the public parameters of the pinocchio zk-snark. In Inter-

national Conference on Financial Cryptography and Data Security, pages

64–77. Springer, 2018.

[25] Sean Bowe, Jack Grigg, and Daira Hopwood. Halo: Recursive proof com-

position without a trusted setup. IACR Cryptol. ePrint Arch., 2019:1021,

2019.

Bibliography 153

[26] Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian

Miers. Updatable and universal common reference strings with applications

to zk-snarks. In Annual International Cryptology Conference, pages 698–

728. Springer, 2018.

[27] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic:

Zero-knowledge snarks from linear-size universal and updatable structured

reference strings. In Proceedings of the 2019 ACM SIGSAC Conference on

Computer and Communications Security, pages 2111–2128, 2019.

[28] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter

Wuille, and Greg Maxwell. Bulletproofs: Short proofs for confidential trans-

actions and more. In 2018 IEEE Symposium on Security and Privacy (SP),

pages 315–334. IEEE, 2018.

[29] Melissa Chase and Sarah Meiklejohn. Transparency overlays and applica-

tions. In Proceedings of the 2016 ACM SIGSAC Conference on Computer

and Communications Security, pages 168–179, 2016.

[30] Michael T Goodrich, Evgenios M Kornaropoulos, Michael Mitzenmacher,

and Roberto Tamassia. Auditable data structures. In 2017 IEEE Euro-

pean Symposium on Security and Privacy (EuroS&P), pages 285–300. IEEE,

2017.

[31] Roberto Tamassia. Authenticated data structures. In European symposium

on algorithms, pages 2–5. Springer, 2003.

[32] Andrew Miller, Michael Hicks, Jonathan Katz, and Elaine Shi. Authenticated

data structures, generically. ACM SIGPLAN Notices, 49(1):411–423, 2014.

[33] Ralph C Merkle. A digital signature based on a conventional encryption

function. In Advances in Cryptology—CRYPTO’87: Proceedings 7, pages

369–378. Springer, 1988.

Bibliography 154

[34] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Web docu-

ment., 2008.

[35] Gavin Wood et al. Ethereum: A secure decentralised generalised transaction

ledger. Ethereum project yellow paper, 151(2014):1–32, 2014.

[36] Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah Azouvi, Patrick

McCorry, Sarah Meiklejohn, and George Danezis. Sok: Consensus in the

age of blockchains. In Proceedings of the 1st ACM Conference on Advances

in Financial Technologies, AFT ’19, page 183–198, New York, NY, USA,

2019. Association for Computing Machinery.

[37] Dorothy E Denning and Peter J Denning. The tracker: A threat to statistical

database security. ACM Transactions on Database Systems (TODS), 4(1):76–

96, 1979.

[38] Arvind Narayanan and Vitaly Shmatikov. Robust de-anonymization of large

sparse datasets. In 2008 IEEE Symposium on Security and Privacy (sp 2008),

pages 111–125. IEEE, 2008.

[39] Yves-Alexandre De Montjoye, César A Hidalgo, Michel Verleysen, and Vin-

cent D Blondel. Unique in the crowd: The privacy bounds of human mobility.

Scientific reports, 3(1):1–5, 2013.

[40] Yves-Alexandre De Montjoye, Laura Radaelli, Vivek Kumar Singh, and

Alex “Sandy” Pentland. Unique in the shopping mall: On the reidentifia-

bility of credit card metadata. Science, 347(6221):536–539, 2015.

[41] Luc Rocher, Julien M Hendrickx, and Yves-Alexandre De Montjoye. Esti-

mating the success of re-identifications in incomplete datasets using genera-

tive models. Nature communications, 10(1):1–9, 2019.

[42] Arvind Narayanan and Vitaly Shmatikov. De-anonymizing social networks.

In 2009 30th IEEE symposium on security and privacy, pages 173–187.

IEEE, 2009.

Bibliography 155

[43] Andrea Gadotti, Florimond Houssiau, Luc Rocher, Benjamin Livshits, and

Yves-Alexandre De Montjoye. When the signal is in the noise: Exploiting

diffix’s sticky noise. In 28th USENIX Security Symposium (USENIX Security

19), pages 1081–1098, 2019.

[44] Simson Garfinkel, John M Abowd, and Christian Martindale. Understanding

database reconstruction attacks on public data. Communications of the ACM,

62(3):46–53, 2019.

[45] Latanya Sweeney. k-anonymity: A model for protecting privacy. Inter-

national Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,

10(05):557–570, 2002.

[46] Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. t-closeness: Pri-

vacy beyond k-anonymity and l-diversity. In Data Engineering, 2007. ICDE

2007. IEEE 23rd International Conference on, pages 106–115. IEEE, 2007.

[47] Ashwin Machanavajjhala, Johannes Gehrke, Daniel Kifer, and Muthura-

makrishnan Venkitasubramaniam. l-diversity: Privacy beyond k-anonymity.

In Data Engineering, 2006. ICDE’06. Proceedings of the 22nd International

Conference on. IEEE, 2006.

[48] Jianneng Cao, Panagiotis Karras, Chedy Raı̈ssi, and Kian-Lee Tan. ρ-

uncertainty: inference-proof transaction anonymization. Proceedings of the

VLDB Endowment, 3(1-2):1033–1044, 2010.

[49] Josep Domingo-Ferrer and Vicenç Torra. A critique of k-anonymity and

some of its enhancements. In Availability, Reliability and Security, 2008.

ARES 08. Third International Conference on, pages 990–993. IEEE, 2008.

[50] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrat-

ing Noise to Sensitivity in Private Data Analysis, pages 265–284. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2006.

Bibliography 156

[51] Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and Muthura-

makrishnan Venkitasubramaniam. l-diversity: Privacy beyond k-anonymity.

ACM Transactions on Knowledge Discovery from Data (TKDD), 1(1):3–es,

2007.

[52] Daniel Kifer and Ashwin Machanavajjhala. No free lunch in data privacy. In

Proceedings of the 2011 ACM SIGMOD International Conference on Man-

agement of data, pages 193–204, 2011.

[53] Arpita Ghosh and Robert Kleinberg. Inferential privacy guarantees for dif-

ferentially private mechanisms. arXiv preprint arXiv:1603.01508, 2016.

[54] Cynthia Dwork. Differential privacy: A survey of results. In International

conference on theory and applications of models of computation, pages 1–19.

Springer, 2008.

[55] Damien Desfontaines and Balázs Pejó. Sok: Differential privacies. Proceed-

ings on Privacy Enhancing Technologies, 2020(2):288–313, 2020.

[56] Michael Carl Tschantz, Shayak Sen, and Anupam Datta. Sok: Differential

privacy as a causal property. In 2020 IEEE Symposium on Security and Pri-

vacy (SP), pages 354–371. IEEE, 2020.

[57] Alexandra Wood, Micah Altman, Aaron Bembenek, Mark Bun, Marco

Gaboardi, James Honaker, Kobbi Nissim, David R O’Brien, Thomas Steinke,

and Salil Vadhan. Differential privacy: A primer for a non-technical audi-

ence. Vand. J. Ent. & Tech. L., 21:209, 2018.

[58] H Page, C Cabot, and K Nissim. Differential privacy an introduction for

statistical agencies. NSQR. Government Statistical Service, 2018.

[59] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. Rappor: Random-

ized aggregatable privacy-preserving ordinal response. In Proceedings of the

2014 ACM SIGSAC conference on computer and communications security,

pages 1054–1067, 2014.

Bibliography 157

[60] Differential Privacy Team. Learning with privacy at scale, 2017.

[61] Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin. Collecting telemetry

data privately. In Advances in Neural Information Processing Systems, pages

3571–3580, 2017.

[62] John M Abowd. The us census bureau adopts differential privacy. In Pro-

ceedings of the 24th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining, pages 2867–2867, 2018.

[63] Simson Garfinkel. Deploying differential privacy for the 2020 census of pop-

ulation and housing. 2019.

[64] Simson L. Garfinkel and Philip Leclerc. Randomness concerns when deploy-

ing differential privacy, 2020.

[65] Fredrik Andersson, John M Abowd, Matthew Graham, Jeremy Wu, and Lars

Vilhuber. Formal privacy guarantees and analytical validity of onthemap

public-use data. 2009.

[66] Ashwin Machanavajjhala, Daniel Kifer, John Abowd, Johannes Gehrke, and

Lars Vilhuber. Privacy: Theory meets practice on the map. In 2008 IEEE

24th international conference on data engineering, pages 277–286. IEEE,

2008.

[67] Aloni Cohen and Kobbi Nissim. Towards formalizing the gdpr’s no-

tion of singling out. Proceedings of the National Academy of Sciences,

117(15):8344–8352, 2020.

[68] Kobbi Nissim, Aaron Bembenek, Alexandra Wood, Mark Bun, Marco

Gaboardi, Urs Gasser, David R O’Brien, Thomas Steinke, and Salil Vadhan.

Bridging the gap between computer science and legal approaches to privacy.

Harv. JL & Tech., 31:687, 2017.

[69] Ronald L Rivest. The ThreeBallot voting system. 2006.

Bibliography 158

[70] Ronald L Rivest and Warren D Smith. Three voting protocols: ThreeBallot,

VAV, and Twin. USENIX/ACCURATE Electronic Voting Technology (EVT

2007), 2007.

[71] Harvey Jones, Jason Juang, and Greg Belote. ThreeBallot in the field. Term

paper for MIT course, 6, 2006.

[72] Andrew W Appel. How to defeat Rivest’s ThreeBallot voting system.

Manuskrypt, pazdziernik, 2006.

[73] Kevin Henry, Douglas R Stinson, and Jiayuan Sui. The effectiveness of

receipt-based attacks on ThreeBallot. IEEE Transactions on Information

Forensics and Security, 4(4):699–707, 2009.

[74] Jacek Cichon, Miroslaw Kutylowski, and Bogdan Weglorz. Short ballot as-

sumption and ThreeBallot voting protocol. In International Conference on

Current Trends in Theory and Practice of Computer Science, pages 585–598.

Springer, 2008.

[75] Charlie EM Strauss. A critical review of the triple ballot voting system,

part 2: Cracking the triple ballot encryption. Unpublished draft, http://

cems.browndogs.org/pub/voting/tripletrouble.pdf, 74,

2006.

[76] Charlie Strauss. The trouble with triples: A critical review of the triple ballot

(3ballot) scheme, part 1. Verified Voting New Mexico, 2006.

[77] Patrick Murmann and Simone Fischer-Hübner. Tools for achieving usable ex

post transparency: a survey. IEEE Access, 5:22965–22991, 2017.

[78] Hans Hedbom. A survey on transparency tools for enhancing privacy. In

IFIP Summer School on the Future of Identity in the Information Society,

pages 67–82. Springer, 2008.

http://cems.browndogs.org/pub/voting/tripletrouble.pdf
http://cems.browndogs.org/pub/voting/tripletrouble.pdf

Bibliography 159

[79] Milena Janic, Jan Pieter Wijbenga, and Thijs Veugen. Transparency enhanc-

ing tools (tets): an overview. In 2013 Third Workshop on Socio-Technical

Aspects in Security and Trust, pages 18–25. IEEE, 2013.

[80] Christian Zimmermann. A categorization of transparency-enhancing tech-

nologies. arXiv preprint arXiv:1507.04914, 2015.

[81] Dayana Spagnuelo, Ana Ferreira, and Gabriele Lenzini. Accomplishing

transparency within the general data protection regulation. In ICISSP, pages

114–125, 2019.

[82] Dayana Spagnuelo, Ana Ferreira, and Gabriele Lenzini. Transparency en-

hancing tools and the gdpr: Do they match? In International Conference on

Information Systems Security and Privacy, pages 162–185. Springer, 2019.

[83] Gaurav Panwar, Roopa Vishwanathan, Satyajayant Misra, and Austin Bos.

Sampl: Scalable auditability of monitoring processes using public ledgers. In

Proceedings of the 2019 ACM SIGSAC Conference on Computer and Com-

munications Security, pages 2249–2266, 2019.

[84] Adam Bates, Kevin RB Butler, Micah Sherr, Clay Shields, Patrick Traynor,

and Dan Wallach. Accountable wiretapping–or–i know they can hear you

now. Journal of Computer Security, 23(2):167–195, 2015.

[85] Marcela S Melara, Aaron Blankstein, Joseph Bonneau, Edward W Felten,

and Michael J Freedman. Coniks: Bringing key transparency to end users.

In USENIX Security Symposium, volume 2015, pages 383–398, 2015.

[86] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining association

rules between sets of items in large databases. In ACM SIGMOD Record,

volume 22, pages 207–216. ACM, 1993.

[87] Alexandre Evfimievski, Ramakrishnan Srikant, Rakesh Agrawal, and Jo-

hannes Gehrke. Privacy preserving mining of association rules. Information

Systems, 29(4):343–364, 2004.

Bibliography 160

[88] Nan Zhang, Shengquan Wang, and Wei Zhao. A new scheme on privacy

preserving association rule mining. In European Conference on Principles

of Data Mining and Knowledge Discovery, pages 484–495. Springer, 2004.

[89] Cynthia Dwork. Differential privacy: A survey of results. In International

Conference on Theory and Applications of Models of Computation, pages

1–19. Springer, 2008.

[90] Mário S Alvim, Miguel E Andrés, Konstantinos Chatzikokolakis, Pierpaolo

Degano, and Catuscia Palamidessi. Differential privacy: on the trade-off be-

tween utility and information leakage. In International Workshop on Formal

Aspects in Security and Trust, pages 39–54. Springer, 2011.

[91] Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N Rothblum. Differen-

tial privacy under continual observation. In Proceedings of the forty-second

ACM symposium on Theory of computing, pages 715–724. ACM, 2010.

[92] Jaewoo Lee and Chris Clifton. How much is enough? choosing ε for differ-

ential privacy. In International Conference on Information Security, pages

325–340. Springer, 2011.

[93] Rui Chen, Noman Mohammed, Benjamin CM Fung, Bipin C Desai, and

Li Xiong. Publishing set-valued data via differential privacy. Proceedings of

the VLDB Endowment, 4(11):1087–1098, 2011.

[94] Arjun Narayan, Ariel Feldman, Antonis Papadimitriou, and Andreas Hae-

berlen. Verifiable differential privacy. In Proceedings of the Tenth European

Conference on Computer Systems, page 28. ACM, 2015.

[95] Andreas Haeberlen, Benjamin C. Pierce, and Arjun Narayan. Differential

privacy under fire. In 20th USENIX Security Symposium, San Francisco, CA,

USA, August 8-12, 2011, Proceedings, 2011.

[96] Maranke Wieringa. What to account for when accounting for algorithms: A

systematic literature review on algorithmic accountability. In Proceedings of

Bibliography 161

the 2020 Conference on Fairness, Accountability, and Transparency, pages

1–18, 2020.

[97] Mark Bovens. Analysing and assessing accountability: A conceptual frame-

work 1. European law journal, 13(4):447–468, 2007.

[98] Roger Taylor and Tim Kelsey. Transparency and the open society: Practical

lessons for effective policy. Policy Press, 2016.

[99] Joan Feigenbaum, Aaron D Jaggard, and Rebecca N Wright. Towards a

formal model of accountability. In Proceedings of the 2011 New security

paradigms workshop, pages 45–56, 2011.

[100] Joan Feigenbaum, James A Hendler, Aaron D Jaggard, Daniel J Weitzner,

and Rebecca N Wright. Accountability and deterrence in online life. In

Proceedings of the 3rd International Web Science Conference, pages 1–7,

2011.

[101] Joshua A Kroll, Joanna Huey, Solon Barocas, Edward W Felten, Joel R Rei-

denberg, David G Robinson, and Harlan Yu. Accountable algorithms. Uni-

versity of Pennsylvania Law Review, 165:633, 2017.

[102] Deven R Desai and Joshua A Kroll. Trust but verify: A guide to algorithms

and the law. Harv. JL & Tech., 31:1, 2017.

[103] Steven J Murdoch and Ross Anderson. Security protocols and evidence:

Where many payment systems fail. In International Conference on Financial

Cryptography and Data Security, pages 21–32. Springer, 2014.

[104] Henrietta Lyons, Eduardo Velloso, and Tim Miller. Conceptualising con-

testability: Perspectives on contesting algorithmic decisions. Proceedings of

the ACM on Human-Computer Interaction, 5(CSCW1):1–25, 2021.

[105] Cambridge Dictionary. Transparency.

[106] Wiktionary. Transparent.

Bibliography 162

[107] Louis Dembitz Brandeis. Other peoples money, and how the bankers use it /

by Louis D. Brandeis. Stokes, New York, 1914.

[108] Matteo Turilli and Luciano Floridi. The ethics of information transparency.

Ethics and Information Technology, 11(2):105–112, 2009.

[109] Department for Digital, Culture, Media & Sport. Uk open government na-

tional action plan, July 2019.

[110] Barack Obama. Transparency and open government. Memorandum for the

heads of executive departments and agencies, 2009.

[111] David Robinson, Harlan Yu, William P Zeller, and Edward W Felten. Gov-

ernment data and the invisible hand. Yale JL & Tech., 11:159, 2008.

[112] Auriol Degbelo and Tomi Kauppinen. Increasing transparency through web

maps. In Companion Proceedings of the The Web Conference 2018, pages

899–904, 2018.

[113] Regulation (eu) 2016/679 of the european parliament and of the council of

27 april 2016 on the protection of natural persons with regard to the process-

ing of personal data and on the free movement of such data, and repealing

directive 95/46/ec (general data protection regulation), 2016.

[114] George A Akerlof. The market for “lemons”: Quality uncertainty and the

market mechanism. In Uncertainty in economics, pages 235–251. Elsevier,

1978.

[115] Ross Anderson and Tyler Moore. The economics of information security.

science, 314(5799):610–613, 2006.

[116] Ross Anderson. Why information security is hard-an economic perspective.

In Seventeenth Annual Computer Security Applications Conference, pages

358–365. IEEE, 2001.

Bibliography 163

[117] Jerome H Saltzer and Michael D Schroeder. The protection of information

in computer systems. Proceedings of the IEEE, 63(9):1278–1308, 1975.

[118] Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman

Vaughan, Hanna Wallach, Hal Daumé Iii, and Kate Crawford. Datasheets

for datasets. Communications of the ACM, 64(12):86–92, 2021.

[119] Sarah Holland, Ahmed Hosny, Sarah Newman, Joshua Joseph, and Kasia

Chmielinski. The dataset nutrition label: A framework to drive higher data

quality standards. arXiv preprint arXiv:1805.03677, 2018.

[120] The Data Nutrition Project. The data nutrition project, 2021.

[121] Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy

Vasserman, Ben Hutchinson, Elena Spitzer, Inioluwa Deborah Raji, and

Timnit Gebru. Model cards for model reporting. In Proceedings of the con-

ference on fairness, accountability, and transparency, pages 220–229, 2019.

[122] Patrick Gage Kelley, Joanna Bresee, Lorrie Faith Cranor, and Robert W

Reeder. A” nutrition label” for privacy. In Proceedings of the 5th Sympo-

sium on Usable Privacy and Security, pages 1–12, 2009.

[123] Patrick Gage Kelley, Lucian Cesca, Joanna Bresee, and Lorrie Faith Cra-

nor. Standardizing privacy notices: an online study of the nutrition label

approach. In Proceedings of the SIGCHI Conference on Human factors in

Computing Systems, pages 1573–1582, 2010.

[124] Daniel J Weitzner, Harold Abelson, Tim Berners-Lee, Joan Feigenbaum,

James Hendler, and Gerald Jay Sussman. Information accountability. Com-

munications of the ACM, 51(6):82–87, 2008.

[125] Motahhare Eslami, Kristen Vaccaro, Min Kyung Lee, Amit Elazari Bar On,

Eric Gilbert, and Karrie Karahalios. User attitudes towards algorithmic opac-

ity and transparency in online reviewing platforms. In Proceedings of the

2019 CHI Conference on Human Factors in Computing Systems, CHI ’19,

Bibliography 164

page 1–14, New York, NY, USA, 2019. Association for Computing Machin-

ery.

[126] Joshua A Kroll. The fallacy of inscrutability. Philosophical Transactions

of the Royal Society A: Mathematical, Physical and Engineering Sciences,

376(2133):20180084, 2018.

[127] Paul Marshall, James Christie, B Ladkin, Bev Littlewood, Stephen Mason,

Martin Newby, Jonathan Rogers, Harold Thimbleby, and M Thomas. Rec-

ommendations for the probity of computer evidence. Digital Evidence and

Electronic Signature Law Review, 18, 2020.

[128] Jasper Jolly. Uk government sets aside up to £233m to cover post office

payouts, 2021.

[129] Steven M Bellovin, Matt Blaze, Susan Landau, and Brian Owsley. Seeking

the source: Criminal defendants’ constitutional right to source code. Ohio

St. Tech. LJ, 17:1, 2021.

[130] Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine bias:

There’s software used across the country to predict future criminals. And it’s

biased against blacks. ProPublica, 23:77–91, 2016.

[131] Solon Barocas and Andrew D Selbst. Big data’s disparate impact. Calif. L.

Rev., 104:671, 2016.

[132] Investigatory Powers Commitioner’s Office. Annual report 2018, March

2020.

[133] Ethan S Bernstein. The transparency paradox: A role for privacy in organi-

zational learning and operational control. Administrative Science Quarterly,

57(2):181–216, 2012.

[134] D Elliott Bell and Leonard J LaPadula. Secure computer systems: Mathemat-

ical foundations. Technical report, MITRE CORP BEDFORD MA, 1973.

Bibliography 165

[135] Kenneth J Biba. Integrity considerations for secure computer systems. Tech-

nical report, MITRE CORP BEDFORD MA, 1977.

[136] Ilia Shumailov, Zakhar Shumaylov, Dmitry Kazhdan, Yiren Zhao, Nicolas

Papernot, Murat A Erdogdu, and Ross Anderson. Manipulating sgd with

data ordering attacks. arXiv preprint arXiv:2104.09667, 2021.

[137] Ethan Bernstein. The transparency trap. Harvard Business Review,

92(10):58–66, 2014.

[138] Jonathan Fox. The uncertain relationship between transparency and account-

ability. Development in practice, 17(4-5):663–671, 2007.

[139] Amitai Etzioni. Is transparency the best disinfectant? Journal of Political

Philosophy, 18(4):389–404, 2010.

[140] Laurence Ferry and Peter Eckersley. Accountability and transparency: a

nuanced response to etzioni. Public Administration Review, 75(1):11, 2015.

[141] Idris Adjerid, Alessandro Acquisti, Laura Brandimarte, and George Loewen-

stein. Sleights of privacy: Framing, disclosures, and the limits of trans-

parency. In Proceedings of the ninth symposium on usable privacy and secu-

rity, pages 1–11, 2013.

[142] Alessandro Acquisti, Idris Adjerid, and Laura Brandimarte. Gone in 15 sec-

onds: The limits of privacy transparency and control. IEEE Security & Pri-

vacy, 11(4):72–74, 2013.

[143] Tianshi Li, Kayla Reiman, Yuvraj Agarwal, Lorrie Faith Cranor, and Jason I

Hong. Understanding challenges for developers to create accurate privacy

nutrition labels. In CHI Conference on Human Factors in Computing Sys-

tems, pages 1–24, 2022.

[144] Harlan Yu and David G Robinson. The new ambiguity of open government.

UCLA L. Rev. Discourse, 59:178, 2011.

Bibliography 166

[145] Karen EC Levy and David Merritt Johns. When open data is a trojan horse:

The weaponization of transparency in science and governance. Big Data &

Society, 3(1):2053951715621568, 2016.

[146] Onora O’neill. A question of trust: The BBC Reith Lectures 2002. Cambridge

University Press, 2002.

[147] Onora O Neill. Transparency and the ethics of communication. In

Proceedings-British Academy, volume 1, pages 75–90. Oxford University

Press, 2006.

[148] Ben Worthy. More open but not more trusted? the effect of the freedom of in-

formation act 2000 on the united kingdom central government. Governance,

23(4):561–582, 2010.

[149] Vincent Mabillard and Martial Pasquier. Transparency and trust in govern-

ment (2007–2014): A comparative study. NISPAcee Journal of Public Ad-

ministration and Policy, 9(2):69–92, 2016.

[150] Cynthia Stohl, Michael Stohl, and Paul M Leonardi. Digital age— managing

opacity: Information visibility and the paradox of transparency in the digital

age. International Journal of Communication, 10:15, 2016.

[151] Arthur Harris Adelberg. Narrative disclosures contained in financial reports:

means of communication or manipulation? Accounting and Business Re-

search, 9(35):179–190, 1979.

[152] Mike Ananny and Kate Crawford. Seeing without knowing: Limitations of

the transparency ideal and its application to algorithmic accountability. new

media & society, 20(3):973–989, 2018.

[153] Adrian Weller. Transparency: motivations and challenges. In Explainable

AI: Interpreting, Explaining and Visualizing Deep Learning, pages 23–40.

Springer, 2019.

Bibliography 167

[154] Jenna Burrell. How the machine ‘thinks’: Understanding opacity in machine

learning algorithms. Big Data & Society, 3(1):2053951715622512, 2016.

[155] Jef Ausloos and Pierre Dewitte. Shattering one-way mirrors. data subject

access rights in practice. Data Subject Access Rights in Practice (January

20, 2018). International Data Privacy Law, 8(1):4–28, 2018.

[156] Brent Mittelstadt. Automation, algorithms, and politics— auditing for trans-

parency in content personalization systems. International Journal of Com-

munication, 10:12, 2016.

[157] Ross Anderson. Open and closed systems are equivalent (that is, in an ideal

world), 2005.

[158] Guido Schryen. Is open source security a myth? Communications of the

ACM, 54(5):130–140, 2011.

[159] Freedom of information act 2000, 2000.

[160] Reuters. Uber drivers consider appeal in dutch case over data access, 2021.

[161] Joshua A Kroll. Outlining traceability: A principle for operationalizing ac-

countability in computing systems. In Proceedings of the 2021 ACM Confer-

ence on Fairness, Accountability, and Transparency, pages 758–771, 2021.

[162] David Devecsery, Michael Chow, Xianzheng Dou, Jason Flinn, and Peter M

Chen. Eidetic systems. In 11th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 14), pages 525–540, 2014.

[163] Mihir Bellare and Bennet Yee. Forward integrity for secure audit logs. Tech-

nical report, Citeseer, 1997.

[164] Bruce Schneier and John Kelsey. Cryptographic support for secure logs on

untrusted machines. In USENIX Security Symposium, volume 98, pages 53–

62. San Antonio, TX, 1998.

Bibliography 168

[165] Bruce Schneier and John Kelsey. Secure audit logs to support computer

forensics. ACM Transactions on Information and System Security (TISSEC),

2(2):159–176, 1999.

[166] Cheun Ngen Chong, Zhonghong Peng, and Pieter H Hartel. Secure audit

logging with tamper-resistant hardware. In Security and Privacy in the Age

of Uncertainty: IFIP TC11 18 th International Conference on Information

Security (SEC2003) May 26–28, 2003, Athens, Greece 18, pages 73–84.

Springer, 2003.

[167] Jason E Holt and Kent E Seamons. Logcrypt: forward security and public

verification for secure audit logs. Cryptology ePrint Archive, 2005.

[168] Brent R Waters, Dirk Balfanz, Glenn Durfee, and Diana K Smetters. Building

an encrypted and searchable audit log. In NDSS, volume 4, pages 5–6, 2004.

[169] Di Ma and Gene Tsudik. A new approach to secure logging. ACM Transac-

tions on Storage (TOS), 5(1):1–21, 2009.

[170] Tobias Pulls, Roel Peeters, and Karel Wouters. Distributed privacy-

preserving transparency logging. In Proceedings of the 12th ACM workshop

on Workshop on privacy in the electronic society, pages 83–94, 2013.

[171] Scott A Crosby and Dan S Wallach. Efficient data structures for tamper-

evident logging. In USENIX Security Symposium, pages 317–334, 2009.

[172] Ben Laurie. Certificate transparency. Communications of the ACM,

57(10):40–46, 2014.

[173] Ben Laurie Adam Eijdenberg and Al Cutter. Trillian – verifiable data struc-

tures, 2017.

[174] Google. Trillian, 2017.

[175] Google. Key transparency, 2017.

Bibliography 169

[176] Mark Dermot Ryan. Enhanced certificate transparency and end-to-end en-

crypted mail. In NDSS, pages 1–14, 2014.

[177] Tobias Pulls and Roel Peeters. Balloon: A forward-secure append-only per-

sistent authenticated data structure. In European Symposium on Research in

Computer Security, pages 622–641. Springer, 2015.

[178] Roel Peeters and Tobias Pulls. Insynd: Improved privacy-preserving trans-

parency logging. In European Symposium on Research in Computer Security,

pages 121–139. Springer, 2016.

[179] Ben Laurie and Emilia Kasper. Revocation transparency. Google Research,

September, 2012.

[180] Rasmus Dahlberg, Tobias Pulls, and Roel Peeters. Efficient sparse merkle

trees. In Nordic Conference on Secure IT Systems, pages 199–215. Springer,

2016.

[181] Michael P Andersen, Sam Kumar, Moustafa AbdelBaky, Gabe Fierro, John

Kolb, Hyung-Sin Kim, David E Culler, and Raluca Ada Popa. Wave: A de-

centralized authorization framework with transitive delegation. In Proceed-

ings of the 28th USENIX Security Symposium. Univ. of California, Berkeley,

CA (United States), 2019.

[182] Yuncong Hu, Kian Hooshmand, Harika Kalidhindi, Seung Jin Yang, and

Raluca Ada Popa. Merklê 2: A low-latency transparency log system. In

2021 IEEE Symposium on Security and Privacy (SP), pages 285–303. IEEE,

2021.

[183] Daniel Reijsbergen, Aung Maw, Zheng Yang, Tien Tuan Anh Dinh, and

Jianying Zhou. Tap: Transparent and privacy-preserving data services. arXiv

preprint arXiv:2210.11702, 2022.

[184] Alin Tomescu, Vivek Bhupatiraju, Dimitrios Papadopoulos, Charalampos

Papamanthou, Nikos Triandopoulos, and Srinivas Devadas. Transparency

Bibliography 170

logs via append-only authenticated dictionaries. In Proceedings of the

2019 ACM SIGSAC Conference on Computer and Communications Security,

pages 1299–1316, 2019.

[185] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

[186] Hoang-Long Nguyen, Claudia-Lavinia Ignat, and Olivier Perrin. Trusternity:

auditing transparent log server with blockchain. In Companion Proceedings

of the The Web Conference 2018, pages 79–80, 2018.

[187] Joseph Bonneau. Ethiks: Using ethereum to audit a coniks key transparency

log. In International Conference on Financial Cryptography and Data Secu-

rity, pages 95–105. Springer, 2016.

[188] Alin Tomescu and Srinivas Devadas. Catena: Efficient non-equivocation via

bitcoin. In 2017 IEEE Symposium on Security and Privacy (SP), pages 393–

409. IEEE, 2017.

[189] Harjasleen Malvai, Lefteris Kokoris-Kogias, Alberto Sonnino, Esha Ghosh,

Ercan Oztürk, Kevin Lewi, and Sean Lawlor. Parakeet: Practical key trans-

parency for end-to-end encrypted messaging. Cryptology ePrint Archive,

2023.

[190] Melissa Chase, Apoorvaa Deshpande, Esha Ghosh, and Harjasleen Malvai.

Seemless: Secure end-to-end encrypted messaging with less trust. In Pro-

ceedings of the 2019 ACM SIGSAC conference on computer and communi-

cations security, pages 1639–1656, 2019.

[191] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. Integridb:

Verifiable sql for outsourced databases. In Proceedings of the 22nd ACM

SIGSAC Conference on Computer and Communications Security, pages

1480–1491, 2015.

[192] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and

Charalampos Papamanthou. vsql: Verifying arbitrary sql queries over dy-

Bibliography 171

namic outsourced databases. In 2017 IEEE Symposium on Security and Pri-

vacy (SP), pages 863–880. IEEE, 2017.

[193] Yanqing Peng, Min Du, Feifei Li, Raymond Cheng, and Dawn Song. Fal-

condb: Blockchain-based collaborative database. In Proceedings of the 2020

ACM SIGMOD International Conference on Management of Data, pages

637–652, 2020.

[194] Elias Grünewald and Frank Pallas. Tilt: A gdpr-aligned transparency infor-

mation language and toolkit for practical privacy engineering. In Proceedings

of the 2021 ACM Conference on Fairness, Accountability, and Transparency,

pages 636–646, 2021.

[195] Lucianna Kiffer, Dave Levin, and Alan Mislove. Stick a fork in it: Analyzing

the ethereum network partition. In Proceedings of the 16th ACM Workshop

on Hot Topics in Networks, pages 94–100, 2017.

[196] Devon O’Brien, Ryan Sleevi, and Andrew Whalley. Chrome’s plan to distrust

symantec certificates, 2017.

[197] Julio Angulo, Simone Fischer-Hübner, Tobias Pulls, and Erik Wästlund. Us-

able transparency with the data track: a tool for visualizing data disclosures.

In Proceedings of the 33rd Annual ACM Conference Extended Abstracts on

Human Factors in Computing Systems, pages 1803–1808, 2015.

[198] Patrick Murmann. Usable transparency for enhancing privacy in mobile

health apps. In Proceedings of the 20th International Conference on Human-

Computer Interaction with Mobile Devices and Services Adjunct, pages 440–

442, 2018.

[199] Patrick Murmann, Delphine Reinhardt, and Simone Fischer-Hübner. To be,

or not to be notified: eliciting privacy notification preferences for online

mhealth services. In ICT Systems Security and Privacy Protection: 34th

IFIP TC 11 International Conference, SEC 2019, Lisbon, Portugal, June 25-

27, 2019, Proceedings 34, pages 209–222. Springer, 2019.

Bibliography 172

[200] Patrick Murmann. Eliciting design guidelines for privacy notifications in

mhealth environments. International Journal of Mobile Human Computer

Interaction (IJMHCI), 11(4):66–83, 2019.

[201] Simone Fischer-Hübner, Julio Angulo, Farzaneh Karegar, and Tobias Pulls.

Transparency, privacy and trust–technology for tracking and controlling my

data disclosures: Does this work? In IFIP International Conference on Trust

Management, pages 3–14. Springer, 2016.

[202] Simone Fischer-Hübner, Julio Angulo, and Tobias Pulls. How can cloud

users be supported in deciding on, tracking and controlling how their data

are used? In IFIP PrimeLife International Summer School on Privacy and

Identity Management for Life, pages 77–92. Springer, 2013.

[203] Stephen Mason and Daniel Seng. Electronic Evidence and Electronic Signa-

tures. University of London Press, 2021.

[204] Emilee Rader, Kelley Cotter, and Janghee Cho. Explanations as mechanisms

for supporting algorithmic transparency. In Proceedings of the 2018 CHI

conference on human factors in computing systems, pages 1–13, 2018.

[205] Chris Norval, Kristin Cornelius, Jennifer Cobbe, and Jatinder Singh. Dis-

closure by design: Designing information disclosures to support meaningful

transparency and accountability. In 2022 ACM Conference on Fairness, Ac-

countability, and Transparency, pages 679–690, 2022.

[206] Christopher Hood. What happens when transparency meets blame-

avoidance? Public Management Review, 9(2):191–210, 2007.

[207] Mariano Di Martino, Pieter Robyns, Winnie Weyts, Peter Quax, Wim

Lamotte, and Ken Andries. Personal information leakage by abusing the

{GDPR}’right of access’. In Fifteenth Symposium on Usable Privacy and

Security ({SOUPS} 2019), 2019.

Bibliography 173

[208] Jatinder Singh and Jennifer Cobbe. The security implications of data subject

rights. IEEE Security & Privacy, 17(6):21–30, 2019.

[209] Wikipedia. Usage share of web browsers, 2022.

[210] Sarah Meiklejohn, Joe DeBlasio, Devon O’Brien, Chris Thompson, Kevin

Yeo, and Emily Stark. Sok: Sct auditing in certificate transparency. arXiv

preprint arXiv:2203.01661, 2022.

[211] Protocol Labs. Filecoin: A decentralized storage network, 2017.

[212] Ben Weinshel, Miranda Wei, Mainack Mondal, Euirim Choi, Shawn Shan,

Claire Dolin, Michelle L Mazurek, and Blase Ur. Oh, the places you’ve been!

user reactions to longitudinal transparency about third-party web tracking

and inferencing. In Proceedings of the 2019 ACM SIGSAC Conference on

Computer and Communications Security, pages 149–166, 2019.

[213] Shagun Jhaver, Amy Bruckman, and Eric Gilbert. Does transparency in

moderation really matter? user behavior after content removal explana-

tions on reddit. Proceedings of the ACM on Human-Computer Interaction,

3(CSCW):1–27, 2019.

[214] Athanasios Andreou, Giridhari Venkatadri, Oana Goga, Krishna Gummadi,

Patrick Loiseau, and Alan Mislove. Investigating ad transparency mecha-

nisms in social media: A case study of facebook’s explanations. In NDSS

2018-Network and Distributed System Security Symposium, pages 1–15,

2018.

[215] Tobias Urban, Martin Degeling, Thorsten Holz, and Norbert Pohlmann. ”

your hashed ip address: Ubuntu.” perspectives on transparency tools for on-

line advertising. In Proceedings of the 35th Annual Computer Security Ap-

plications Conference, pages 702–717, 2019.

[216] Investigatory Powers Act, 2016.

Bibliography 174

[217] Ben Wagner, Krisztina Rozgonyi, Marie-Therese Sekwenz, Jennifer Cobbe,

and Jatinder Singh. Regulating transparency? facebook, twitter and the ger-

man network enforcement act. In Proceedings of the 2020 Conference on

Fairness, Accountability, and Transparency, pages 261–271, 2020.

[218] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci,

Frank Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom, and

Raoul Strackx. Foreshadow: Extracting the keys to the intel {SGX} kingdom

with transient {Out-of-Order} execution. In 27th USENIX Security Sympo-

sium (USENIX Security 18), pages 991–1008, 2018.

[219] Hal Varian. System reliability and free riding. In Economics of information

security, pages 1–15. Springer, 2004.

[220] Andrei Lapets, Frederick Jansen, Kinan Dak Albab, Rawane Issa, Lucy Qin,

Mayank Varia, and Azer Bestavros. Accessible privacy-preserving web-

based data analysis for assessing and addressing economic inequalities. In

Proceedings of the 1st ACM SIGCAS Conference on Computing and Sustain-

able Societies, pages 1–5, 2018.

[221] Ehsan Toreini, Siamak F Shahandashti, and Feng Hao. Texture to the rescue:

Practical paper fingerprinting based on texture patterns. ACM Transactions

on Privacy and Security (TOPS), 20(3):1–29, 2017.

[222] Ashlesh Sharma, Lakshminarayanan Subramanian, and Eric A Brewer. Pa-

perspeckle: microscopic fingerprinting of paper. In Proceedings of the 18th

ACM conference on Computer and communications security, pages 99–110,

2011.

[223] William Clarkson, Tim Weyrich, Adam Finkelstein, Nadia Heninger, J Alex

Halderman, and Edward W Felten. Fingerprinting blank paper using com-

modity scanners. In 2009 30th IEEE Symposium on Security and Privacy,

pages 301–314. IEEE, 2009.

Bibliography 175

[224] James DR Buchanan, Russell P Cowburn, Ana-Vanessa Jausovec, Dorothee

Petit, Peter Seem, Gang Xiong, Del Atkinson, Kate Fenton, Dan A Allwood,

and Matthew T Bryan. ‘fingerprinting’documents and packaging. Nature,

436(7050):475–475, 2005.

[225] Wiwi Samsul, Henri P Uranus, and MD Birowosuto. Recognizing docu-

ment’s originality by laser surface authentication. In 2010 second interna-

tional conference on advances in computing, control, and telecommunication

technologies, pages 37–40. IEEE, 2010.

[226] Zhengxiong Li, Aditya Singh Rathore, Chen Song, Sheng Wei, Yanzhi Wang,

and Wenyao Xu. Printracker: Fingerprinting 3d printers using commodity

scanners. In Proceedings of the 2018 ACM sigsac conference on computer

and communications security, pages 1306–1323, 2018.

[227] Francesco Guarnera, Dario Allegra, Oliver Giudice, Filippo Stanco, and Se-

bastiano Battiato. A new study on wood fibers textures: documents authen-

tication through lbp fingerprint. In 2019 IEEE International Conference on

Image Processing (ICIP), pages 4594–4598. IEEE, 2019.

[228] Frerik van Beijnum, EG van Putten, KL Van der Molen, and AP Mosk.

Recognition of paper samples by correlation of their speckle patterns. arXiv

preprint physics/0610089, 2006.

[229] S. Wang, E. Toreini, and F. Hao. Anti-counterfeiting for polymer banknotes

based on polymer substrate fingerprinting. IEEE Transactions on Informa-

tion Forensics and Security, 16:2823–2835, 2021.

[230] Martin Henze, Daniel Kerpen, Jens Hiller, Michael Eggert, David Hell-

manns, Erik Mühmer, Oussama Renuli, Henning Maier, Christian Stüble,

Roger Häußling, et al. Towards transparent information on individual cloud

service usage. In 2016 IEEE International Conference on Cloud Computing

Technology and Science (CloudCom), pages 366–370. IEEE, 2016.

Bibliography 176

[231] Max Van Kleek, Ilaria Liccardi, Reuben Binns, Jun Zhao, Daniel J Weitzner,

and Nigel Shadbolt. Better the devil you know: Exposing the data sharing

practices of smartphone apps. In Proceedings of the 2017 CHI Conference

on Human Factors in Computing Systems, pages 5208–5220, 2017.

[232] Yuanchun Li, Fanglin Chen, Toby Jia-Jun Li, Yao Guo, Gang Huang,

Matthew Fredrikson, Yuvraj Agarwal, and Jason I Hong. Privacystreams:

Enabling transparency in personal data processing for mobile apps. Proceed-

ings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technolo-

gies, 1(3):1–26, 2017.

[233] Sourya Joyee De and Daniel Le Métayer. Privacy risk analysis to enable

informed privacy settings. In 2018 IEEE European Symposium on Security

and Privacy Workshops (EuroS&PW), pages 95–102. IEEE, 2018.

[234] the New York Times. Changes to the census could make small towns disap-

pear, february 2020.

[235] Theresa Stadler, Bristena Oprisanu, and Carmela Troncoso. Synthetic data–

anonymisation groundhog day. arXiv preprint arXiv:2011.07018, 2021.

[236] Jim Miller. Coordinated disclosure of vulnerabilities affecting girault, bullet-

proofs, and plonk, 2022.

[237] Josh Swihart, Benjamin Winston, and Sean Bowe. Zcash counterfeiting vul-

nerability successfully remediated, 2019.

[238] Daniel J Bernstein, Tanja Lange, and Ruben Niederhagen. Dual ec: A stan-

dardized back door. In The New Codebreakers, pages 256–281. Springer,

2016.

[239] BBC. A-levels and GCSEs: U-turn as teacher estimates to be used for exam

results, August 2020.

Bibliography 177

[240] Zakir Durumeric, James Kasten, Michael Bailey, and J Alex Halderman.

Analysis of the https certificate ecosystem. In Proceedings of the 2013 con-

ference on Internet measurement conference, pages 291–304, 2013.

[241] Jeremy Clark and Paul C Van Oorschot. Sok: Ssl and https: Revisiting

past challenges and evaluating certificate trust model enhancements. In 2013

IEEE Symposium on Security and Privacy, pages 511–525. IEEE, 2013.

[242] Nicole Van der Meulen. Diginotar: Dissecting the first dutch digital disaster.

Journal of Strategic Security, 6(2):46–58, 2013.

[243] Microsoft. Fraudulent digital certificates could allow spoofing, August 2011.

[244] Heather Adkins. An update on attempted man-in-the-middle attacks, August

2011.

[245] Johnathan Nightingale. Fraudulent *.google.com certificate, August 2011.

[246] R Stradling. Certificate transparency version 2.0 draft-ietf-trans-rfc6962-bis-

39. 2021.

[247] Benjamin Dowling, Felix Günther, Udyani Herath, and Douglas Stebila. Se-

cure logging schemes and certificate transparency. In European Symposium

on Research in Computer Security, pages 140–158. Springer, 2016.

[248] E. Stark, R. Sleevi, R. Muminovic, D. O’Brien, E. Messeri, A. P. Felt,

B. McMillion, and P. Tabriz. Does certificate transparency break the web?

measuring adoption and error rate. In 2019 IEEE Symposium on Security and

Privacy (SP), pages 211–226, 2019.

[249] Josh Aas, Richard Barnes, Benton Case, Zakir Durumeric, Peter Eckersley,

Alan Flores-López, J Alex Halderman, Jacob Hoffman-Andrews, James Kas-

ten, Eric Rescorla, et al. Let’s encrypt: an automated certificate authority to

encrypt the entire web. In Proceedings of the 2019 ACM SIGSAC Conference

on Computer and Communications Security, pages 2473–2487, 2019.

Bibliography 178

[250] Emily Stark, Joe DeBlasio, and Devon O’Brien. Certificate transparency

in google chrome: Past, present, and future. IEEE Security & Privacy,

19(6):112–118, 2021.

[251] Stijn Pletinckx, Thanh-Dat Nguyen, Tobias Fiebig, Christopher Kruegel, and

Giovanni Vigna. Certifiably vulnerable: Using certificate transparency logs

for target reconnaissance. In 2023 IEEE European Symposium on Security

and Privacy (EuroS&P). IEEE, 2023.

[252] Quirin Scheitle, Oliver Gasser, Theodor Nolte, Johanna Amann, Lexi Brent,

Georg Carle, Ralph Holz, Thomas C Schmidt, and Matthias Wählisch. The

rise of certificate transparency and its implications on the internet ecosystem.

In Proceedings of the Internet Measurement Conference 2018, pages 343–

349, 2018.

[253] Richard Roberts and Dave Levin. When certificate transparency is too trans-

parent: Analyzing information leakage in https domain names. In Proceed-

ings of the 18th ACM Workshop on Privacy in the Electronic Society, pages

87–92, 2019.

[254] Bingyu Li, Jingqiang Lin, Fengjun Li, Qiongxiao Wang, Qi Li, Jiwu Jing,

and Congli Wang. Certificate transparency in the wild: Exploring the relia-

bility of monitors. In Proceedings of the 2019 ACM SIGSAC Conference on

Computer and Communications Security, pages 2505–2520, 2019.

[255] Laurent Chuat, Pawel Szalachowski, Adrian Perrig, Ben Laurie, and Eran

Messeri. Efficient gossip protocols for verifying the consistency of certificate

logs. In 2015 IEEE Conference on Communications and Network Security

(CNS), pages 415–423. IEEE, 2015.

[256] Oliver Gasser, Benjamin Hof, Max Helm, Maciej Korczynski, Ralph Holz,

and Georg Carle. In log we trust: revealing poor security practices with

certificate transparency logs and internet measurements. In International

Bibliography 179

Conference on Passive and Active Network Measurement, pages 173–185.

Springer, 2018.

[257] Sarah Meiklejohn, Pavel Kalinnikov, Cindy S Lin, Martin Hutchinson, Gary

Belvin, Mariana Raykova, and Al Cutter. Think global, act local: Gossip and

client audits in verifiable data structures. arXiv preprint arXiv:2011.04551,

2020.

[258] Ethereum. Proof-of-stake rewards and penalties, 2022.

[259] Aggelos Kiayias, Andrew Miller, and Dionysis Zindros. Non-interactive

proofs of proof-of-work. In International Conference on Financial Cryp-

tography and Data Security, pages 505–522. Springer, 2020.

[260] Joseph Bonneau, Izaak Meckler, Vanishree Rao, and Evan Shapiro. Mina:

Decentralized cryptocurrency at scale. New York Univ. O (1) Labs, New

York, NY, USA, Whitepaper, pages 1–47, 2020.

[261] Mustafa Al-Bassam, Alberto Sonnino, Vitalik Buterin, and Ismail Khoffi.

Fraud and data availability proofs: Detecting invalid blocks in light clients.

In International Conference on Financial Cryptography and Data Security,

pages 279–298. Springer, 2021.

[262] Mingchao Yu, Saeid Sahraei, Songze Li, Salman Avestimehr, Sreeram Kan-

nan, and Pramod Viswanath. Coded merkle tree: Solving data availability

attacks in blockchains. In International Conference on Financial Cryptogra-

phy and Data Security, pages 114–134. Springer, 2020.

[263] Ethereum. Optimistic rollups, 2023.

[264] Ethereum. Zero-knowledge rollups, 2023.

[265] Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko, Da-

mon McCoy, Geoffrey M Voelker, and Stefan Savage. A fistful of bitcoins:

characterizing payments among men with no names. In Proceedings of the

2013 conference on Internet measurement conference, pages 127–140, 2013.

Bibliography 180

[266] Ross Anderson, Ilia Shumailov, Mansoor Ahmed, and Alessandro Rietmann.

Bitcoin redux. 2019.

[267] Mansoor Ahmed, Ilia Shumailov, and Ross Anderson. Tendrils of crime:

Visualizing the diffusion of stolen bitcoins. In International Workshop on

Graphical Models for Security, pages 1–12. Springer, 2018.

[268] Ghada Almashaqbeh and Ravital Solomon. Sok: Privacy-preserving com-

puting in the blockchain era. Cryptology ePrint Archive, 2021.

[269] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian

Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous

payments from bitcoin. In 2014 IEEE Symposium on Security and Privacy,

pages 459–474. IEEE, 2014.

[270] Kurt M Alonso et al. Zero to monero, 2020.

[271] Alexey Pertsev, Roman Semenov, and Roman Storm. Tornado cash privacy

solution version 1.4. 2019.

[272] U.S. Treasury sanctions notorious virtual currency mixer Tornado Cash,

2022.

[273] Claudia Diaz, Harry Halpin, and Aggelos Kiayias. The nym network, 2021.

[274] George Kappos, Haaroon Yousaf, Mary Maller, and Sarah Meiklejohn. An

empirical analysis of anonymity in zcash. In 27th USENIX Security Sympo-

sium (USENIX Security 18), pages 463–477, 2018.

[275] Alex Biryukov, Daniel Feher, and Giuseppe Vitto. Privacy aspects and sub-

liminal channels in zcash. In Proceedings of the 2019 ACM SIGSAC Confer-

ence on Computer and Communications Security, pages 1813–1830, 2019.

[276] Alex Biryukov and Daniel Feher. Privacy and linkability of mining in zcash.

In 2019 IEEE Conference on Communications and Network Security (CNS),

pages 118–123. IEEE, 2019.

Bibliography 181

[277] Malte Möser, Kyle Soska, Ethan Heilman, Kevin Lee, Henry Heffan,

Shashvat Srivastava, Kyle Hogan, Jason Hennessey, Andrew Miller, Arvind

Narayanan, and Nicolas Christin. An empirical analysis of traceability in

the monero blockchain. Proceedings on Privacy Enhancing Technologies,

2018(3):143–163, 2018.

[278] Younggee Hong, Hyunsoo Kwon, Jihwan Lee, and Junbeom Hur. A practical

de-mixing algorithm for bitcoin mixing services. In Proceedings of the 2nd

ACM Workshop on Blockchains, Cryptocurrencies, and Contracts, pages 15–

20, 2018.

[279] Mike Wu, Will McTighe, Kaili Wang, Istvan A Seres, Nick Bax, Manuel

Puebla, Mariano Mendez, Federico Carrone, Tomás De Mattey, Herman O

Demaestri, et al. Tutela: An open-source tool for assessing user-privacy on

ethereum and tornado cash. arXiv preprint arXiv:2201.06811, 2022.

[280] Ameen Soleimani. Privacy pools with opt-in or opt-out anonymity sets, 2022.

[281] Patrik Keller, Martin Florian, and Rainer Böhme. Collaborative

deanonymization. In International Conference on Financial Cryptography

and Data Security, pages 39–46. Springer, 2021.

[282] Shayan Eskandari, Seyedehmahsa Moosavi, and Jeremy Clark. Sok: Trans-

parent dishonesty: front-running attacks on blockchain. In International

Conference on Financial Cryptography and Data Security, pages 170–189.

Springer, 2019.

[283] Kirill Nikitin, Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly,

Linus Gasser, Ismail Khoffi, Justin Cappos, and Bryan Ford. {CHAINIAC}:

Proactive software-update transparency via collectively signed skipchains

and verified builds. In 26th {USENIX} Security Symposium ({USENIX} Se-

curity 17), pages 1271–1287, 2017.

Bibliography 182

[284] Mustafa Al-Bassam and Sarah Meiklejohn. Contour: A practical system for

binary transparency. In Data Privacy Management, Cryptocurrencies and

Blockchain Technology, pages 94–110. Springer, 2018.

[285] Mark D Flood, Jonathan Katz, Stephen J Ong, and Adam Smith. Cryptogra-

phy and the economics of supervisory information: Balancing transparency

and confidentiality. 2013.

[286] Oshani Seneviratne and Lalana Kagal. Enabling privacy through trans-

parency. In 2014 Twelfth Annual International Conference on Privacy, Secu-

rity and Trust, pages 121–128. IEEE, 2014.

[287] Daniel J Weitzner, Harold Abelson, Tim Berners-Lee, Chris Hanson, James

Hendler, Lalana Kagal, Deborah L McGuinness, Gerald Jay Sussman, and

K Krasnow Waterman. Transparent accountable data mining: New strategies

for privacy protection. 2006.

[288] Daniel Weitzner, Hal Abelson, Tim Berners-Lee, Christ Hanson, Jim

Hendler, Lalana Kagal, D McGuinness, Gerry Sussman, and K Krasnow Wa-

terman. Transparent accountable inferencing for privacy risk management.

In AAAI Spring Symposium on The Semantic Web meets eGovernment. AAAI

Press, Stanford University, 2006.

[289] Giridhari Venkatadri, Alan Mislove, and Krishna P Gummadi. Treads:

transparency-enhancing ads. In Proceedings of the 17th ACM Workshop on

Hot Topics in Networks, pages 169–175, 2018.

[290] Nigel Shadbolt, Kieron O’Hara, Tim Berners-Lee, Nicholas Gibbins, Hugh

Glaser, Wendy Hall, et al. Linked open government data: Lessons from data.

gov. uk. IEEE Intelligent Systems, 27(3):16–24, 2012.

[291] Kieron O’Hara. Transparent government, not transparent citizens: a report

on privacy and transparency for the cabinet office. 2011.

Bibliography 183

[292] Home Office. Operational case for the use of communications data by public

authorities. https://www.gov.uk/government/publications/

investigatory-powers-bill-overarching-documents,

2016.

[293] Interception of Communications Commissioner’s Office. Report of the inter-

ception of communications commissioner - annual report for 2016, Decem-

ber 2017.

[294] ETSI. TS 103 307: Security aspects for LI and RD interfaces, 2018. V1.3.1.

[295] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De

Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, S. Muralidha-

ran, C. Murthy, B. Nguyen, M. Sethi, G. Singh, K. Smith, A. Sorniotti,

C. Stathakopoulou, M. Vukolić, S. Weed Cocco, and J. Yellick. Hyperledger

Fabric: A Distributed Operating System for Permissioned Blockchains.

ArXiv e-prints, January 2018.

[296] Christian Cachin. Architecture of the Hyperledger blockchain fabric. In

Workshop on Distributed Cryptocurrencies and Consensus Ledgers, 2016.

[297] Marko Vukolić. Rethinking permissioned blockchains. In Proceedings of the

ACM Workshop on Blockchain, Cryptocurrencies and Contracts, pages 3–7.

ACM, 2017.

[298] Ben Laurie, Adam Langley, and Emilia Kasper. Rfc 6962 – Certificate trans-

parency. Technical report, 2013.

[299] Özgür Dagdelen. The cryptographic security of the German electronic iden-

tity card. PhD thesis, Technische Universität Darmstadt, 2013.

[300] J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106,

1986.

[301] Investigatory Powers Commitioner’s Office. Annual report of the investiga-

tory powers commissioner 2017, January 2019.

https://www.gov.uk/government/publications/investigatory-powers-bill-overarching-documents
https://www.gov.uk/government/publications/investigatory-powers-bill-overarching-documents

Bibliography 184

[302] Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differ-

ential privacy. Foundations and Trends® in Theoretical Computer Science,

9(3–4):211–407, 2014.

[303] J. Heaton. Comparing dataset characteristics that favor the apriori, eclat or

fp-growth frequent itemset mining algorithms. In SoutheastCon 2016, pages

1–7, March 2016.

[304] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining as-

sociation rules. Proc. of the 20th VLDB Conference, pages 487–499, 1994.

[305] A Dekhtyar and J Verburg. Extended bakery dataset. https://wiki.

csc.calpoly.edu/datasets/wiki/ExtendedBakery, 2009.

[306] Frederic Flouvat, F De March, and Jean-Marc Petit. A thorough experi-

mental study of datasets for frequent itemsets. In Data Mining, Fifth IEEE

International Conference on. IEEE, 2005.

[307] Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim. Practi-

cal privacy: the sulq framework. In Proceedings of the twenty-fourth ACM

SIGMOD-SIGACT-SIGART symposium on Principles of database systems,

pages 128–138. ACM, 2005.

[308] Pietro Hiram Guzzi, Marianna Milano, and Mario Cannataro. Mining asso-

ciation rules from gene ontology and protein networks: Promises and chal-

lenges. Procedia Computer Science, 29:1970–1980, 2014.

[309] Anurag Nagar, Michael Hahsler, and Hisham Al-Mubaid. Association rule

mining of gene ontology annotation terms for sgd. In Computational Intel-

ligence in Bioinformatics and Computational Biology (CIBCB), 2015 IEEE

Conference on, pages 1–7. IEEE, 2015.

[310] Daniel Faria, Andreas Schlicker, Catia Pesquita, Hugo Bastos, António EN

Ferreira, Mario Albrecht, and André O Falcão. Mining go annotations for

improving annotation consistency. PloS one, 7(7):e40519, 2012.

https://wiki.csc.calpoly.edu/datasets/wiki/ExtendedBakery
https://wiki.csc.calpoly.edu/datasets/wiki/ExtendedBakery

Bibliography 185

[311] Anand Kumar, Barry Smith, and Christian Borgelt. Dependence relation-

ships between gene ontology terms based on tigr gene product annotations.

In Proceedings of CompuTerm 2004: 3rd International Workshop on Com-

putational Terminology, 2004.

[312] So Hyun Park, Shin Yi Jang, Ho Kim, and Seung Wook Lee. An association

rule mining-based framework for understanding lifestyle risk behaviors. PloS

one, 9(2):e88859, 2014.

[313] Peter B Jensen, Lars J Jensen, and Søren Brunak. Mining electronic health

records: towards better research applications and clinical care. Nature Re-

views Genetics, 13(6):395, 2012.

[314] Giulia Toti, Ricardo Vilalta, Peggy Lindner, Barry Lefer, Charles Macias, and

Daniel Price. Analysis of correlation between pediatric asthma exacerbation

and exposure to pollutant mixtures with association rule mining. Artificial

intelligence in medicine, 74:44–52, 2016.

[315] Mustafa Suleyman and Ben Laurie. Trust, confidence and verifiable data

audit, 2017.

[316] Mireille Hildebrandt. Legal and technological normativity: more (and

less) than twin sisters. Techné: Research in Philosophy and Technology,

12(3):169–183, 2008.

[317] Ashley Nellis. The color of justice: Racial and ethnic disparity in state pris-

ons. 2021.

[318] Kim Zetter. Diginotar files for bankruptcy in wake of devastating hack, 2011.

[319] Tim Wu. When code isn’t law. Va. L. Rev., 89:679, 2003.

[320] Ross Anderson. Security engineering: a guide to building dependable dis-

tributed systems. John Wiley & Sons, 2020.

Bibliography 186

[321] Lawrence Lessig. Law regulating code regulating law. Loy. U. Chi. LJ, 35:1,

2003.

[322] Joan Feigenbaum and Daniel J Weitzner. On the incommensurability of laws

and technical mechanisms: Or, what cryptography can’t do. In Cambridge

International Workshop on Security Protocols, pages 266–279. Springer,

2018.

[323] Joel R Reidenberg. Lex informatica: The formulation of information policy

rules through technology. Tex. L. Rev., 76:553, 1997.

[324] Lawrence Lessig. Code is law. Harvard magazine, 1(2000), 2000.

[325] Nick Szabo. Formalizing and securing relationships on public networks.

First monday, 1997.

[326] Max Raskin. The law and legality of smart contracts. 2016.

[327] Laurent Simon, David Chisnall, and Ross Anderson. What you get is what

you c: Controlling side effects in mainstream c compilers. In 2018 IEEE Eu-

ropean Symposium on Security and Privacy (EuroS&P), pages 1–15. IEEE,

2018.

[328] Laurence Diver. Digisprudence: the design of legitimate code. Law, Innova-

tion and Technology, pages 1–30, 2021.

[329] Bogdan Kulynych, Rebekah Overdorf, Carmela Troncoso, and Seda Gürses.

Pots: protective optimization technologies. In Proceedings of the 2020

Conference on Fairness, Accountability, and Transparency, pages 177–188,

2020.

[330] Seda Gürses, Rebekah Overdorf, and Ero Balsa. Stirring the pots: protec-

tive optimization technologies. In Being profiled, pages 24–29. Amsterdam

University Press, 2018.

Bibliography 187

[331] Ivan Evtimov, David O’Hair, Earlence Fernandes, Ryan Calo, and Tadayoshi

Kobno. Is tricking a robot hacking? Berkeley Tech. LJ, 34:891, 2019.

[332] Ian Goldberg, David Wagner, and Eric Brewer. Privacy-enhancing technolo-

gies for the internet. In Proceedings IEEE COMPCON 97. Digest of Papers,

pages 103–109. IEEE, 1997.

[333] Seda Gürses, Carmela Troncoso, and Claudia Diaz. Engineering privacy by

design. Computers, Privacy & Data Protection, 14(3):25, 2011.

[334] Seda Gürses, Carmela Troncoso, and Claudia Diaz. Engineering privacy by

design reloaded. In Amsterdam Privacy Conference, pages 1–21, 2015.

[335] Shoshana Zuboff. Big other: surveillance capitalism and the prospects of

an information civilization. Journal of information technology, 30(1):75–89,

2015.

[336] Jeff John Roberts. Hoax over ‘dead’ ethereum founder spurs $4 billion wipe

out, 2017.

[337] Sarah Azouvi, Mary Maller, and Sarah Meiklejohn. Egalitarian society or

benevolent dictatorship: The state of cryptocurrency governance. In Inter-

national Conference on Financial Cryptography and Data Security, pages

127–143. Springer, 2018.

[338] Peter H Hochschild, Paul Turner, Jeffrey C Mogul, Rama Govindaraju,

Parthasarathy Ranganathan, David E Culler, and Amin Vahdat. Cores that

don’t count. In Proceedings of the Workshop on Hot Topics in Operating

Systems, pages 9–16, 2021.

[339] Emma Arfelt, David Basin, and Søren Debois. Monitoring the gdpr. In

European Symposium on Research in Computer Security, pages 681–699.

Springer, 2019.

[340] Ben Green. The flaws of policies requiring human oversight of government

algorithms, 2021.

Bibliography 188

[341] Russell Hotten. Volkswagen: The scandal explained, 2015.

[342] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio:

Nearly practical verifiable computation. In Security and Privacy (SP), 2013

IEEE Symposium on, pages 238–252. IEEE, 2013.

[343] Pauline T Kim. Auditing algorithms for discrimination. U. Pa. L. Rev. Online,

166:189, 2017.

[344] Anupam Datta, Deepak Garg, Dilsun Kaynar, Divya Sharma, and Arunesh

Sinha. Program actions as actual causes: A building block for accountability.

In 2015 IEEE 28th Computer Security Foundations Symposium, pages 261–

275. IEEE, 2015.

[345] Anupam Datta, Shayak Sen, and Yair Zick. Algorithmic transparency via

quantitative input influence: Theory and experiments with learning systems.

In 2016 IEEE symposium on security and privacy (SP), pages 598–617.

IEEE, 2016.

[346] Nick Wallis. The Great Post Office Scandal. Bath Publishing Ltd, 2021.

[347] Tim McCormack. The post office horizon system and seema misra. Digital

Evidence & Elec. Signature L. Rev., 13:133, 2016.

[348] Jasper Jolly. Uk government sets aside up to £233m to cover post office

payouts, 2021.

[349] Ekker. Dutch court rules on data transparency for uber and ola drivers, 2021.

[350] The App Drivers and Couriers Union. Uber under pressure over facial recog-

nition checks for drivers; call for suspension of checks.

[351] Inioluwa Deborah Raji, Andrew Smart, Rebecca N White, Margaret

Mitchell, Timnit Gebru, Ben Hutchinson, Jamila Smith-Loud, Daniel

Theron, and Parker Barnes. Closing the ai accountability gap: Defining

an end-to-end framework for internal algorithmic auditing. In Proceedings

Bibliography 189

of the 2020 conference on fairness, accountability, and transparency, pages

33–44, 2020.

[352] Peter Bernard Ladkin, Bev Littlewood, Harold Thimbleby, and Martyn

Thomas. The law commission presumption concerning the dependability of

computer evidence. Digital Evidence & Elec. Signature L. Rev., 17:1, 2020.

[353] Peter Bernard Ladkin. Robustness of software. Digital Evidence & Elec.

Signature L. Rev., 17:15, 2020.

[354] Nicholas Bohm, James Christie, Peter Bernard Ladkin, Bev Littlewood, Paul

Marshall, Stephen Mason, Martin Newby, Steven Murdoch, Harold Thim-

bleby, and Martyn Thomas. Briefing note: The legal rule that computers

are presumed to be operating correctly–unforeseen and unjust consequences.

Digital Evidence and Electronic Signature Law Review, 19:123–127, 2022.

[355] Todd Feathers. Police are telling ShotSpotter to alter evidence from gunshot-

detecting AI, July 2021.

[356] Umang Bhatt, Alice Xiang, Shubham Sharma, Adrian Weller, Ankur Taly,

Yunhan Jia, Joydeep Ghosh, Ruchir Puri, José MF Moura, and Peter Eckers-

ley. Explainable machine learning in deployment. In Proceedings of the 2020

Conference on Fairness, Accountability, and Transparency, pages 648–657,

2020.

[357] Jakko Kemper and Daan Kolkman. Transparent to whom? no algorithmic

accountability without a critical audience. Information, Communication &

Society, 22(14):2081–2096, 2019.

[358] Heike Felzmann, Eduard Fosch Villaronga, Christoph Lutz, and Aurelia

Tamò-Larrieux. Transparency you can trust: Transparency requirements for

artificial intelligence between legal norms and contextual concerns. Big Data

& Society, 6(1):2053951719860542, 2019.

[359] General data protection regulation, 2016.

Bibliography 190

[360] Zakir Durumeric, Frank Li, James Kasten, Johanna Amann, Jethro Beekman,

Mathias Payer, Nicolas Weaver, David Adrian, Vern Paxson, Michael Bailey,

et al. The matter of heartbleed. In Proceedings of the 2014 conference on

internet measurement conference, pages 475–488, 2014.

[361] Elissa M. Redmiles, Mia M. Bennett, and Tadayoshi Kohno. Power in

computer security and privacy: A critical lens. IEEE Security & Privacy,

21(2):48–52, 2023.

	Introduction
	Scope and Organization of The Thesis
	Publications Resulting From This Thesis Work
	Papers used in this thesis
	Papers not included in this thesis

	Work Done in Collaboration

	Technical Primitives
	Cryptographic Hash Functions
	Public Key Cryptography
	Public key encryption
	Digital Signatures
	Zero Knowledge Proofs
	Public key infrastructure

	Transparency Overlays
	Merkle trees and verifiable log backed maps
	Distributed Ledgers

	Inference Control
	Differential privacy

	ThreeBallot

	Related Work
	Work related to Chapter 4
	Work related to Chapter 5
	Work Related to Chapter 6

	Log Based Transparency Enhancing Technologies
	Introduction
	A Short Overview of Transparency
	Transparency matters for computer systems
	Forms Of Transparency
	Criticisms of Transparency

	Essential Mechanisms
	Logging mechanism
	Sanitization mechanism
	Release and query mechanism
	External mechanisms

	Transparency and Security
	Assets and beneficiaries of transparency
	Threats based on essential mechanisms

	Transparency Infrastructure
	Requiring and maintaining transparency
	Truth

	Balancing Transparency With Privacy
	Editorial control
	Individual evidence

	Case Studies
	Certificate Transparency
	Blockchain based cryptocurrencies

	Conclusion

	VAMS: Transparent Auditing of Access to Data
	Introduction
	Outline of the Chapter

	Motivating Scenarios
	Law-enforcement access to communications data
	Access to healthcare records

	Threat Model and Goals
	Threat Model

	Building VAMS
	Using Hyperledger Fabric and Trillian as tamper-evident logs
	Tagging log entries with common identifiers
	Generating synthetic data and verifying statistics with MultiBallot

	Operating VAMS
	Appending to the log
	Querying the log
	Publishing and verifying audits

	Achieving Transparency and Privacy Goals
	Goal T1: log availability
	Goal T2: log integrity
	Goal T3: verifiability of inputs to audits
	Goal T4: verifiability of published audits
	Goal T5: transparency of the system
	Goal P1: The log itself does not reveal any sensitive information
	Goal P2: verifying an audit is privacy preserving

	Implementation and Performance
	Evaluating Hyperledger Fabric and Trillian based logs
	Evaluating the verification of statistics with Multiballot

	Deployability
	Conclusion

	Transparency, Compliance, and Contestability When Code Is Law
	Introduction
	Outline of the Chapter

	Preventing Misbehaviour Through Legal Processes and Security Mechanisms
	Norms and misbehaviour
	Law based disincentivization and punishment of misbehaviour
	Security against threats and a posteriori security
	Economic considerations
	The interaction between security mechanisms and legal mechanisms

	Accountability Through The Lens of Code Is Law and Digisprudence
	Code is Law and Digisprudence
	Digisprudence and Accountability

	From Accountability to Contestability
	Compliance and Transparency Based Auditing
	Verification and compliance based auditing
	Transparency Enhancing Technologies
	Examples of the usefulness of system transparency in court cases

	Practical Considerations
	Electronic evidence
	Balancing transparency and privacy
	A system in one place, transparency in another

	Conclusion

	Conclusion
	Open Problems
	Closing thoughts

	Bibliography

