
VAMS: Transparent Auditing of Access to Data

Alexander Hicks
University College London

Vasilios Mavroudis∗

Alan Turing Institute
Mustafa Al-Bassam∗

Celestia

Sarah Meiklejohn
University College London & Google

Steven J. Murdoch
University College London

Abstract
We propose VAMS, a system that enables transparency for
audits of access to data requests without compromising the
privacy of parties in the system. VAMS supports audits on an
aggregate level and an individual level, by relying on three
mechanisms. A tamper-evident log provides integrity for the
log entries that are audited. A tagging scheme allows users to
query log entries that relate to them, without allowing others
to do so. MultiBallot, a novel extension of the ThreeBallot
voting scheme, is used to generate a synthetic dataset that
can be used to publicly verify published statistics with a low
expected privacy loss. We evaluate two implementations of
VAMS, and show that both the log and the ability to verify
published statistics are practical for realistic use cases such
as access to healthcare records and law enforcement access
to communications records.

1 Introduction

Personal data plays an important role in activities where there
is a high cost of failure e.g., health-care, preventing and de-
tecting crime, and legal proceedings. Often, however, the or-
ganizations that need access to this data are not the ones who
generate or hold the data, so data must be shared for it to
be used. Such sharing must be done with care as improper
sharing or modification of sensitive data can result in harm to
the individuals whose data is involved, and others, whether
through breaches of confidentiality or incorrect decisions as
a result of tampered data. If there is widespread abuse of
personal data, people may become unwilling to allow their
data to be collected and processed even when it would benefit
themselves and society.

Simple restrictions on sharing of personal data can be auto-
matically enforced through access control and cryptographic
protections, such as preventing unauthorized parties from ac-
cessing databases in which personal data is held. However,

∗Work done while at University College London

other equally important restrictions involve human interpreta-
tions of rules, consent, or depend on information not available
to the computer system enforcing them. For example, access
to medical records may be permitted only when it would be
in the interests of the patient. Similarly, access to communi-
cation records may be permitted only if it is necessary and
proportionate to prevent crime.

In such cases, rules cannot reliably be automatically en-
forced in real-time so the approach commonly taken is to
keep records of access attempts and subject the actions to
audit. Provided that the audit can detect improper activities
and violations are harshly punished, abuse can be effectively
deterred. Statistics published about the audit can also provide
confidence to society that access to data is being controlled
and that organizations who can access data will be held to
account.

This raises questions about who performs the audit and
how the auditor can be assured that the records they see are
accurate. If individuals at risk of their personal data being
misused do not trust that the auditor is faithfully carrying out
their duties then the goal of the audit will not be achieved.
However, because of the sensitivity of personal data and the
records containing the justification for data being processed,
not everyone can act as an auditor. Even if it was possible to
find an organization whose audit would be widely accepted,
an audit based on tampered records would not be reliable.

The integrity of the data that is accessed is also important
when actions are taken based on this data. When making a
medical decision or conducting legal proceedings, relying
on tampered data can have severe consequences. It may be
possible to refer back to the organization that collected the
data to verify its integrity, but if that organization no longer
holds the data or has gone out of business, such verification is
not possible. Digital signatures can provide some confidence
that data is genuine, but if the private key is compromised
then any data signed by that key is subject to doubt, even if it
was created before the point of key compromise.

To improve on the current situation, we propose VAMS,
a system that enables transparent audits of access to data re-

1

quests. This is achieved by allowing auditors to verify the
integrity of the data they see and publish audits that can be
publicly verified without compromising the privacy of the par-
ties involved, as well as allowing individuals to audit requests
for data that relates to them.

2 Outline of the paper

Section 4 introduces our setting, threat model, and goals,
which address transparency (verifiable audits of aggregate
and individual outcomes) and privacy (the verifiability of au-
dits cannot reveal more than what is intentionally revealed by
audits).

We describe in Section 5 the three mechanisms that we use
to build VAMS. Tamper-evident logging provides integrity
for the information they see on the log. A log entry tagging
scheme allows users to efficiently find log entries that are
relevant to them. MultiBallot, a novel adaptation of ThreeBal-
lot [50] as a rule-based way of generating a synthetic dataset,
allows published audits to be publicly verified with only a
small expected privacy loss.

The operation of VAMS is described in Section 6, while
Section 7 argues that it achieves the goals stated in Section 4,
and Section 8 shows that the two implementations of the
log, based on Hyperledger Fabric (HLF) and Trillian, show
sufficient scalability and functionality, as well as the ability to
accurately verify statistics with MultiBallot. Our results show
that VAMS can serve as a lightweight overlay applicable to
many use cases.

3 Motivating scenarios

To motivate the design of our system, we consider two chal-
lenging scenarios: controlling the access of law-enforcement
personnel to communication records and the access of health-
care professionals to medical data.

3.1 Law-enforcement access to communica-
tions data

In the UK 95% of serious and organized crime cases make use
of communications data [33] – metadata stored by telecom-
munications providers in their billing system about account
holders or their use of communications networks (e.g., phone
numbers called, address associated with an account, location
of a mobile phone). Telecommunications providers are re-
quired to store this data for up to 2 years, but once this period
has expired and there is no business reason to store this per-
sonal data, they are required to delete it. Within the period
that data is stored, law-enforcement personnel is permitted to
request access, provided that they can demonstrate that their

actions are legally justified1. At the time a request is made,
there is, however, no external oversight. Instead, information
about the request and the justification for access are stored and
made available for audit by the Investigatory Powers Com-
missioner’s Office (IPCO)2. IPCO then assess whether law
enforcement personnel make appropriate use of the powers
they were given, and publishes reports with statistics of how
these powers were used [34].

Communications data plays an important role in the investi-
gation of criminal offences, but may also be used as evidence
in legal proceedings, for the prosecution or defence. If the
integrity of the evidence is questioned, a representative of the
telecommunications provider will be asked to appear in court
to verify the evidence and attest to its accuracy. If technical
issues arise related to this evidence, one of the parties to the
case may also request that the court request assistance from
an expert witness. This process is expensive, time-consuming,
and even impossible if the provider has deleted the original
data in the time between the law enforcement agency request-
ing it and the data being required in court.

To improve the process, industry standards allow providers
to sign or hash communications data when it is provided in
response to a request from law enforcement. Someone who
needs to verify an item of data can compare the hash to the one
stored by the provider, or verify the digital signature using the
provider’s public key [21]. However, if the provider’s private
key or hash database is compromised, any evidence presented
after to the compromise will be brought into doubt, even if it
was generated before the time of compromise.

Our system can be applied in this scenario, allowing the
integrity of communications data evidence to be demonstrated,
even if the communications provider which produced the
data no longer exists or has been compromised. Furthermore,
the system will give assurance to the auditor that records
of requests to access communications data have not been
tampered with, and assure society that reported statistics have
not been improperly manipulated by the auditor. We also show
how the system protects the privacy of individuals whose data
is requested and also protects the confidentiality of ongoing
law-enforcement investigations.

3.2 Access to healthcare records

In our second scenario, we consider how to empower individ-
uals by giving them control over how their medical records
are used and shared. In a healthcare system, once consent
has been given by a patient, various actors should be able to
access various records associated with that patient; e.g., their
general practitioner should be able to access scans that were

1Similar legal powers are available in the US through the use of admin-
istrative subpoenas, but as there are no publicly available statistics for their
use and there is no centralized oversight, we focus on the UK case.

2Before to September 2017 this role of IPCO was the responsibility of
the Interception of Communications Commissioner’s Office (IOCCO).

2

Figure 1: The parties in VAMS and their functionalities. The
optional data broker would act as a user.

run at a hospital, and researchers running academic studies or
clinical trials in which the patient has enrolled should be able
to access records relevant to the study.

Currently, patients can only give permission for broad types
of activities and may have legitimate concerns that their in-
formation is being used inappropriately. Conversely, patients
with serious diseases (e.g., cancer, motor neuron disease) of-
ten have trouble getting the treatment they need, as universi-
ties conducting studies are legally blocked from contacting
them, and patients are unaware that such studies are going on.

Opening up access to medical databases may fulfil the
needs of some patients but would also open up the potential
for abuse, so it is important for patients to have visibility into
how their data is being used to understand the implications of
their consent. For clinical practice, the default could be that
patients opt-in to sharing their data, although they can always
opt out if they wish. For academic studies and clinical trials,
the default should be that they are opted out, but can opt-in.
They can even choose at some granular level (e.g., according
to the type of study) which studies they want to opt in to.

One issue with having patients opt in individually is that
for some studies this process may not result in a large enough
sample. Equally, if patients are deluged with requests for
consent, they are likely to resort to some default behaviour
(“click-through syndrome”) without understanding what they
have consented to. As such, patients could outsource these
decisions to data brokers; i.e., organizations that pay attention
to the studies being conducted and are authorized to provide
consent on behalf of patients registered with them.

Our system can be applied to allow patients to share their
data in such a way as to protect their privacy while ensuring
that unauthorized parties are prevented from having access
and that authorized parties abusing their access can be de-
tected.

4 Threat model and Goals

Our setting (illustrated in Figure 1) involves agents, data
providers, users, auditors, log servers, and (optional) data bro-
kers. Table 1 summarises the functionalities and malicious
behaviours for each party, which we describe below.

The log is a key-value store of access to data requests. The
values of log entries are records i.e., tuples of elements such as
the attributes of a data request (e.g., the type of data requested
by law enforcement) or answers to a medical questionnaire.
The log can also contain datasets and statistics published by
auditors or a link to the datasets and statistics along with
a hash to verify their integrity. Log servers host the log of
requests (host). A malicious log server would aim to give
inconsistent views of the log to auditors and users i.e., attack
the availability of logged information.

Agents (e.g., law enforcement, medical researchers) request
access to user data from data providers (request). A malicious
agent would aim to access data without it being logged or
submit an invalid request, and try to tamper with a logged
invalid request before an auditor or user audits it. In other
words, a malicious agent would aim to attack the integrity of
the log.

Data providers (e.g., telecommunications providers, health-
care providers, users) collect user data and receive requests
from agents (provide). A malicious data provider would aim
to give access to data without it being logged.

Auditors audit the log (audit) and publish statistical reports
(publish). In the UK, the IPCO is an example of this kind
of auditor. They must be able to detect if log servers are
behaving dishonestly (detect). A malicious auditor would aim
to publish an inaccurate report i.e., compromise the integrity
of the audit.

Users are members of the public that check requests for
their data (check) and verify audits (monitor). They must
also be able to detect if log servers are behaving dishonestly
(detect). A malicious user would aim to learn information
about another user (i.e., attack their privacy) by using the log
or published audits.

Data brokers are non-essential intermediaries that users can
rely on to deal with requests if they are willing to serve as a
data provider e.g., by providing data to a study. A data broker
can then deal with requests (broker) according to pre-set rules
from the user. A malicious broker would aim to misrepresent
the user’s preference e.g., accept requests that the user’s rules
would prohibit.

4.1 Threat Model

We allow every party to act maliciously except for colluding
data providers and agents as they could simply exchange data
without it being logged. This cannot be prevented with cryp-
tographic techniques because the data must generally exist in
an unencrypted form for its primary use e.g., routing calls or

3

Table 1: The parties in the system, the functions they perform and their malicious behaviour.

Party Function Malicious behaviour

Agent request: append a request to a data provider to the log Provide an invalid request
Data provider provide: answer a request that is on the log Provide invalid data

detect: detect if log servers are behaving dishonestly
User check: look for relevant log entries Access requests relevant to other users

monitor: verify the statistics published by auditors Infer information from the statistics
detect: detect if log servers are behaving dishonestly

Auditor audit: check the log entries for misuse or errors Infer information from the log
publish: publish statistics about entries on the log Publish inaccurate statistics
detect: detect if log servers are behaving dishonestly

Log server host: return the log to parties wishing to inspect it Provide inconsistent views of the log
Data broker broker: respond to requests in place of a user according to their preferences Misrepresent the preferences of the user

providing healthcare. We, therefore, require that agents log
their requests and that data providers do not answer requests
without ensuring that the request has been logged. If one of
these parties is malicious, their misbehaviour will be caught
by the other.

In practice, VAMS as described here would be augmented
by procedural and technical access controls that prevent confi-
dential data from leaving a system without being logged. The
goal of VAMS is to help ensure that requests represented by
the log are compliant with policy and have not been tampered
with.

4.1.1 Transparency goals

Our motivation is to provide more agency to users, who in
many current systems have data requested and provided about
them but cannot evaluate this process. To help resolve this
asymmetry, VAMS is designed to provide verifiable aggregate
statistics (population outcomes) about requests for data and
the use of data that can be verified by users, and allow users
to check for log entries that are relevant to them (individual
outcomes). This is achieved through five transparency goals,
which are summarised in Table 2 .

Log availability (T1). It must be possible for users and audi-
tors to access the information they require for their respective
audits.

Log integrity (T2). Users and auditors must also be able
to check the integrity of the information they access because
the information on the log could have been modified or they
could be given an incorrect view of the log.

Verifiability of inputs used to compute statistics (T3) and
of published statistics (T4). Due to the sensitivity of per-
sonal data and the records containing the justification for data

being processed, not everyone can act as an auditor with wide-
ranging access to log entries. Auditors are therefore relied on
to compute and publish aggregate statistics. To minimise the
trust required in the auditors, users must be able to verify both
the input and the output of the computation of the statistics.
Auditors could otherwise publish bogus statistics by miscom-
puting them or by computing them on a fake dataset that gives
the results they desire.

Transparency of the system (T5). Users and auditors
should only have to rely on VAMS itself to perform their
functions and not a potentially malicious party.

4.1.2 Privacy goals

Our transparency goals must be complemented by privacy
goals to ensure that parties in the system do not learn private
information about one another in the process of performing
their audits. This may seem contradictory, but information
relating only to a single party is not necessarily required to
evaluate the system as a whole. VAMS does not control the
contents of a published audit so it cannot control the privacy
loss associated with an audit, which will vary based on the
requirements and privacy concerns of auditors. As a result
of this, our privacy goals (summarised in Table 2) focus on
requiring that VAMS does not lead to a greater loss of privacy
than what is released through a published audit.

The log itself does not reveal any sensitive information
(P1). This requires that the log entries themselves do not
reveal any sensitive information, but also that the log as a
whole does not reveal links between requests so the log entries
should be unlinkable.

Verifying an audit is privacy-preserving (P2). It should
not be possible to learn information about individuals from
statistics published by an auditor i.e., verifying an audit should

4

Table 2: Transparency and privacy goals that address the malicious behaviours defined in our threat model.

Goal Supports Protects against

Log availability (T1) Agents and users (detect) Log servers providing inconsistent views of the log
Log integrity (T2) Agents (audit) and users (check) Agents tampering requests
Verifiability of inputs used to compute statistics (T3) Users (monitor) Auditors releasing inaccurate statistics
Verifiability of published statistics (T4) Users (monitor) Auditors inaccurate statistics
Transparency of the system (T5) Auditors and users Reliance on agents, data providers, or (for users) auditors
The log itself does not reveal any sensitive information (P1) User, agent, data provider privacy Parties wanting to infer information from the log
Verifying an audit is privacy preserving (P2) User privacy Parties wanting to infer information from the statistics

not reveal more than the correctness of the audits themselves,
although the audit itself may reveal sensitive information.

5 Building VAMS

VAMS is built using technical mechanisms that we describe
below, based on the rationale that follows.

Central to VAMS is the log containing requests submitted
by agents through request. For the log, key-value stores are
a natural choice as log entries (key-value pairs) include keys
(i.e., identifiers) that can easily be queried by users performing
check. Log integrity requirements mean that auditors and
users should be able to verify that the records that they access
are those submitted by agents, so the log must be tamper-
evident.

Auditors and users should also be able to detect log mis-
behaviour e.g., equivocation in the form of an altered log or
a split-view attack in which different versions of the log to
different parties. The need for a tamper-evident log can also
be seen in cases where evidence is required e.g., when an
agent must show that they accessed data with a valid request.
In some cases, urgent requests that are authorized orally (with
paperwork authorized only retroactively) are necessary e.g.,
in the case of a medical or security emergency, so attempting
to block invalid requests as they are issued is not enough.

Requests should be signed so that they can be used as
evidence to assign liability and to hold the relevant parties
accountable. This would work only if the evidence produced
is robust so that liability can be properly assigned. Evidence
should also exist even if the party that produced it is no longer
active e.g., if a data provider declares bankruptcy, or if some
servers fail, or are destroyed. Thus, logs should not depend
solely on the party tied to the evidence.

Once requests are recorded in the log, auditors perform
their audits and publish the resulting statistics through publish.
Users must be able to verify these statistics through monitor
(requiring the published statistics and the data necessary to
verify their results) without learning more than what is re-
vealed by the statistics themselves i.e., specific information
about other individual users.

To summarize, we need the following. First, we need some
kind of tamper-evident log, which requires that the state up-

dates of the log be tied to a blockchain, a history tree [12],
or more generically a transparency overlay [10] with effi-
cient proofs of inclusion and consistency. Second, we need a
mechanism that allows the log to be efficiently queried (i.e.,
identifying relevant requests) without revealing any links be-
tween entries on the log. Third, we need a mechanism to
publish statistics that can be verified without revealing more
information than what can be learned from the statistics them-
selves.

5.1 Using Hyperledger Fabric and Trillian as
tamper-evident logs

Existing transparency overlays come in the form of distributed
ledgers and verifiable logs. We have implemented VAMS
twice, using Hyperledger Fabric, a distributed ledger with an
underlying blockchain, and Trillian, a verifiable log-backed
map.

In both cases, using HLF or Trillian guarantees that the
log is tamper-evident due to the underlying blockchain or
verifiable log that records state updates, that the availability
of information on the log can be assured by making log equiv-
ocation detectable, and that the log is easy to query as it is in
the form of a key-value store.

Hyperledger Fabric Hyperledger Fabric [5,8,55] is a mod-
ular open-source system for deploying and operating permis-
sioned distributed ledgers whose state updates are recorded
on a blockchain.

A HLF network is composed of peers, who maintain a
key-value store that is updated through transactions on the
underlying blockchain, and an ordering service (i.e., a con-
sensus protocol). Because updates to the ledger’s state (i.e.,
VAMS’s log) are recorded on the underlying blockchain that
is append-only, the ledger’s state benefits from availability
guarantees against the log equivocating as a log server that
equivocates results in a fork of the blockchain. Integrity guar-
antees against tampering of the log are also guaranteed as
changes to the ledger’s state appears on the blockchain, which
can be replayed or queried through a key history function.

Peers have identities in the form of X.509 public-key cer-
tificates and a Membership Service Provider (a PKI). These

5

identities allow peers to be split up into organizations on the
network (e.g., agents, data providers, . . .). This provides a
way of implementing basic access control for operations on
the network.

Updating the state of the ledger requires endorsing peers to
execute chaincode (smart contracts) and sign the transaction
containing the resulting state update. This ensures that an
endorsing peer can be held accountable for the transactions
they endorse e.g., the requests they make as agents or the
requests they accept as data providers.

Transactions are then sent to the ordering service that pack-
ages them into blocks with which validating peers update
the state of the ledger. Only endorsing peers are required to
execute code for a transaction, so other peers do not handle
any computational burden other than receiving events from
the network. The endorsement mechanism also allows for
endorsement policies that limit which peers can invoke or
sign transactions for a certain chaincode, for example, based
on their organization.

Trillian Trillian [27] is an open-source project that imple-
ments a generalization of Certificate Transparency [39] based
on three components: a verifiable log, a verifiable map, and a
log of map heads.

Trillian’s verifiable log (not to be confused with VAMS’s
log) is an append-only log implemented as a Merkle tree that
allows clients to efficiently verify that an entry is included in
the log (with a proof showing the Merkle path to the tree’s en-
try), detect log equivocation (i.e., conflicting tree heads), and
verify that the log is append-only (through Merkle consistency
proofs).

The verifiable map (i.e., VAMS’s log) is a key-value store
implemented as a sparse Merkle tree pre-populated with all
possible keys as leaves e.g., all 2256 possible SHA-256 hashes.
Although a tree with 2256 unique leaves would not be practical
to compute, only the non-empty leaves have to be computed
because all others will have the same value (e.g., zero) [38].
Clients can then verify that a certain value is included (or not)
in the map at any point in time, with proofs containing Merkle
paths. Combining a verifiable log with a verifiable map leads
to a verifiable log-backed map, where the log contains an
ordered set of operations applied to the map. Clients can then
verify that the entries in the map they view are the same as
those viewed by others by replaying the log and detecting any
change in values of the key-value store.

The log of map heads records the root hash of the log,
signed by the log’s server so that if it equivocates there is a
cryptographic proof that it has done so. Because Trillian does
not involve a consensus protocol, it instead relies on gossip
between clients (e.g., auditors and users performing detect)
to detect misbehaving servers by comparing the views of the
log that they have received.

As in the case of HLF, the fact that updates to the verifiable
map (VAMS’s log) are recorded on Trillian’s append-only

verifiable log provides availability guarantees again VAMS’s
log equivocating as this will lead to different three heads in the
log of map heads, and integrity guarantees against tampering
of VAMS’s log as updates will appear on the underlying
append-only Merkle tree that is Trillian’s log.

5.2 Tagging log entries with common identi-
fiers

In order to gain useful information from VAMS, users must
be able to efficiently identify the log entries that contain infor-
mation that is relevant to them. The values of log entries (i.e.,
records) will be encrypted for privacy reasons so this requires
a mechanism that allows agents and data providers to derive
keys that users can also compute only if the entry is relevant
to them.

A strawman solution would require users to ask agents
for the log entries relevant to them. This would reveal to
agents which users are monitoring the log, and require users
to trust agents that could lie about the log entries that are
relevant to them. To remove the need for users to interact
with agents, we use common identifiers that can be computed
only with information known to a user, the data provider, and
the agent that is involved in a request. By relying on shared
information we remove the need for interaction, and by having
the information known to not only the agent and user but also
the data provider, a data provider that is not colluding with
the agent can check that the tag will be correct.

We assume that agents and data providers refer to a given
user using (private) agent and data provider identifiers, ida
and iddp, which are also known to the user they correspond
to but not to others. It is then possible to obtain common
identifiers idc = Hash(ida∥iddp∥n) by using a secure hash
function such as SHA-256, where n is a session identifier that
changes deterministically with every request involving the
same pair (ida, iddp).

This ensures different requests involving the same parties
are unlinkable as common identifiers will appear random,
but allows users to check requests that are relevant to them
communicating with agents or data providers, which also
reduces the risk of information leaking. The private contents
of the requests are then simply encrypted under the keys of
users and auditors so that they can access them.

We assume that ida and iddp are pseudorandom strings like,
for example, the German Electronic Identity Card that can be
used for online authentication and has been analysed from a
cryptographic point of view [13]. This is not unreasonable for
purpose-built identifiers, and although it adds the burden of
managing them, software such as password managers or data
brokers could be relied on.

An agent or data provider could in principle leak ida, iddp,
or common identifiers, but they could just as well leak the data
attached to it in the first place. As we have remarked in the
threat model, this cannot strictly be prevented as they control

6

Figure 2: Example transformation of records in D to shares
in Dpriv for univariate and multivariate statistics. In the uni-
variate case, the record is split into individual elements. In the
multivariate case, the record is used to generate shares with
the same number of elements that are then split from each
other.

the data much like they must know the common identifiers to
tag the log entries. Moreover, they would not gain anything
from doing so.

5.3 Generating synthetic data and verifying
statistics with MultiBallot

To allow published statistics to be publicly verified without
incurring more of a privacy loss than is already caused by
the statistics themselves, we introduce a way for auditors to
generate a synthetic dataset Dpriv from the dataset D used to
compute the statistics. We call this randomized mechanism
MultiBallot and denote Mn : D 7→ Dpriv the mapping of |D|
records in D to n|D| shares in Dpriv.

MultiBallot can be used to support either exclusively uni-
variate statistics or multivariate statistics. Figure 2 illustrates
how a record in a dataset D that has e binary elements can be
transformed into shares of a synthetic dataset Dpriv according
to the rules we describe for each case. Elements, in this case,
could be attributes of a request for data in the law enforcement
case e.g., “request type:urgent/not urgent”, or of a patient in a
medical study e.g., “has gene X:yes/no”.

In the univariate case, the elements of a record are simply
split and shuffled, which allows univariate statistics to be re-
computed without the possibility of computing multivariate
statistics. In the multivariate case, the record in D generates
a combination of shares that introduce noise into the Dpriv
but preserve the relative counts between elements in D and
therefore allow multivariate statistics to be re-computed.

In both cases, shares in Dpriv can be tagged so that the pub-
lished statistics and their inputs can be verified. The privacy
loss associated with the verification of the statistics through a
public dataset Dpriv is also mitigated by ensuring Dpriv can-
not be used to reconstruct D or learn more information than
what is learnt from the statistics in the first place, and (in the
multivariate case) by generating it in a way that guarantees
only a small expected privacy loss from having one’s data
included.

Generating Dpriv for univariate statistics

Support for univariate statistics, and in particular a restriction
to univariate statistics is important in settings where multi-
variate statistics are not used due to privacy concerns. This
is for example the reason that IPCO reports contain only uni-
variate statistics. When only univariate statistics are required,
it is, therefore, important that Dpriv should not be useful to
compute multivariate statistics.

To handle the univariate case, shares in Dpriv are obtained
by splitting records in D into shares that each have one ele-
ment only and then shuffling them, as in Algorithm 1. Each
share is tagged with the element type and a unique share iden-
tifier idshare = Hash(idc∥i) (using a secure hash function e.g.,
SHA-256) derived from the common identifier idc of the user
and the index i of the share.

Algorithm 1 M1 : D 7→ Dpriv for univariate statistics.

Input: D = {ri = (ri,1, . . . ,ri,|ri|)|i ∈ [1, |D|],ri, j ∈ {2,4}2}
Output: Dpriv = {shares ∈ {2,4}2}
list shares = []
for i = 1, . . . , |D| do

for j = 1, . . . , |ri| do
shares = shares+ ri, j

shu f f le(shares)
return shares

Splitting up the shares ensures that the original record can-
not be reconstructed without knowing the common identifiers
used to generate the share identifiers, so the only thing that
can be learnt is the individual counts of elements, which were
already revealed by the statistics themselves. The univariate
statistics (i.e., counts) will be unchanged as they do not de-
pend on more than one element so they are unaffected by the
split of elements and can be verified. Multivariate statistics
on the other hand will not be computable.

Generating Dpriv for multivariate statistics

In cases where multivariate statistics are needed (e.g., medical
studies), records in D are split into n shares that have as many
elements as the records. Our approach is inspired by Rivest’s
ThreeBallot voting scheme [49, 50], which works by giving
voters three ballots (instead of one) and having them fill them
according to a set of rules. We extend this to any odd number
of ballots (combinations of shares in Dpriv) where a vote for
or against an element corresponds to having an attribute or not.
We show how to use this as a way of generating a synthetic
dataset (Dpriv) that can be used to re-compute multivariate
statistics originally computed using D.

Shares are generated such that the correct value of each
element e (i.e., 42 or 24) appears s ∈ [1,k+ 1] times and
the “false” value e (i.e., 24 or 42) appears s−1 times. The
remaining elements in the shares are neutral and take the form

7

44 or 22. Algorithm 2 summarises this process. Once the
shares are generated, they are tagged as in the univariate case
with a share identifier, split up, and shuffled.

Algorithm 2 Generating valid combinations of shares for
Dpriv in the multivariate case.
Input: n = 2k+1,k ∈ N
Output: Valid combinations of n= 2k+1 shares for elements

24 and 42
for e in [42,24] do

list sharese = []
for s = 0, . . . ,k−1 do

tuple shares = (e)
for i = 0, . . . ,s−1 do

shares = shares+(e)+(e)

while length(shares)< 2k+1 do
shares = shares+(44)+(22)

sharese = sharese + permutations(shares)

return shares42,n, shares24,n

Algorithm 3 Mn : D 7→ Dpriv for multivariate statistics.

Input: D = {ri = (ri,1, . . . ,ri,|ri|)|i ∈ [1, |D|],ri, j ∈ {2,4}2}
n = 2k+1,k ∈ N
shares42
shares24
Output: Dpriv =
list shares = []

for i = 1, . . . , |D| do
tuple sharesi

for j = 1, . . . , |ri| do
if ri, j =42 then

_← shares42
sharesi = sharesi +_

else
_← shares44

sharesi = sharesi +_

shu f f le(shares)
return shares

The number of valid combinations B of shares, given by
Equation 5.1, is obtained by considering the number of mul-
tiset permutations of the shares for each possible value of s,
summing over s, and multiplying by a factor of 2 to account
for both elements.

B = 2
k+1

∑
s=1

(2k+1)!
s!(s−1)!(k+1− s)!(k+1− s)!

(5.1)

As an example we look at the record in Figure 2,
which corresponds to [42,42,24,24,42]. With n =

3, an element 24 can generate a combination of shares
(24,24,42) and its 6 permutations, and (24,44,22)
and its 3 permutations. Similarly, an element 42 can
generate a combination of shares (42,42,24) and
its 6 permutations, and (42,44,22) and its 3 per-
mutations. For each element, a valid combination of
shares is picked at random. In Figure 2 this re-
sults in [(42,22,22), (42,42,24), (44,24,22),
(42,24,24), (24,42,42)]. Split up in Dpriv, these will
look like three records of the form [42,42,44,42,24],
[22,42,24,24,42], [22,24,22,24,42].

Valid combinations of shares can be pre-computed, so all
that is required given D is to randomly pick combinations of
shares for all records. The shares are therefore picked from a
distribution given in Equations 5.4 and 5.5 for each element,
which is derived in more detail in Section 7, where it is also
shown that the process of generating Dpriv incurs only a small
expected privacy loss.

S42 = S24 =
k+1

∑
s=1

(2s−1)
(2k+1)!

s!(s−1)!(k+1− s)!(k+1− s)!
(5.2)

S44 = S22 = 2
k+1

∑
s=1

(k+1− s)
(2k+1)!

s!(s−1)!(k+1− s)!(k+1− s)!
(5.3)

Pr(42) = Pr(24) =
S42

(2k+1)B
(5.4)

Pr(44) = Pr(22) =
S44

(2k+1)B
(5.5)

The level of privacy depends on the original distribution
of elements in D and the number of shares generated (i.e. the
parameter k). This means that the level of privacy can be tuned
by varying k (see Section 7). Reconstructing a record in D
will also be highly improbable as given even all but one of the
shares generated from a specific record, finding the correct
last share will be improbable as no link will be revealed by
the share identifiers. Verifying multivariate statistics will be
possible (as we will see next), as well as their inputs by using
the share identifiers.

Verifying statistics with MultiBallot

Verifying univariate statistics is straightforward because this
just involves counting the number of occurrences of an ele-
ment having values 0 or 1 in Dpriv, which will be the same
as the number of occurrences in D. Because shares in Dpriv
are tagged with an element type, the total number of shares
that correspond to a specific element is also the same as the
number of records in D that include that element.

The multivariate case is a bit more involved and we show
how to do it explicitly for association rule mining, although a

8

similar approach could be used for other ways of computing
multivariate statistics. This allows the results of an analysis of
D to be estimated from Dpriv by computing a matrix populated
with the expected counts of shares in Dpriv, which translates
between D and Dpriv.

Association rule mining [2] is one of the most commonly
used approaches to identify if-then rules and relationships
between variables in large datasets. Given an element set E
of binary elements of a record and a dataset D of records con-
taining elements that form a subset of E, rules such as ε⇒ ε′

where ε,ε′ ⊆ E are used to find interesting relationships be-
tween variables e.g., linking a set of genes with a particular
disease. Two measures are commonly used to select interest-
ing rules: support and confidence.

Support, defined in Equation 5.6, indicates how frequently a
subset of elements appears in the dataset i.e., the proportion of
records R ∈ δ (where δ⊆D) that contain a subset of elements
ε ∈ E. Confidence, defined in Equation 5.7, indicates how
often a rule is found to be true. Given a rule ε⇒ ε′, it is
defined using the support of the rule ε⇒ ε′ and the support
of ε.

supp(ε) =
|{R ∈ δ : ε ∈ R}|

|δ|
(5.6)

con f (ε⇒ ε
′) =

supp(ε⇒ ε′)

supp(ε)
(5.7)

Our goal is to estimate the true counts of ε, ε′ and ε∪ ε′

in D based on observations from Dpriv, which also contains
noise in the form of elements e. Computing the support and
confidence measures defined above is then straightforward.
This process is often referred to as support recovery. For
simplicity, we represent both the original records and the
shares as bitstrings. For example, the record and shares
in Figure 2 can be represented as [10,10,01,01,10] and
[(10,10,11,10,01),(00,10,01,01,10),(11,01,00,01,10)].
This is the same as the previous notation with 4 = 1 and
2= 0.

We define oD and oDpriv , which contain the number of oc-
currences of all possible bitstring permutations in D and Dpriv
in Equation 5.8. (The number of occurrences may be 0 for
some permutations.)

oD, opriv =

 #[0]
...

#[2t −1]

D,Dpriv

(5.8)

We also define M in Equation 5.9. This matrix stores
the expected bitstring occurrences E(#[s]) of any bitstring
s ∈ [0,2t −1] in Dpriv (i.e., E[opriv]) for all possible bitstring
permutations and a fixed number of bits t. The value E(#[s]) is
obtained from the distribution of shares given in Equations 5.4
and 5.5.

M =

 E[#[0]]0 . . . E[#[0]]2t−1...
...

...
E[#[2t −1]]0 . . . E[#[2t −1]]2t−1

 (5.9)

A relation between opriv, M, and oD, can be established
from the fact that for each record in D its elements contribute
an expected amount of each element in Dpriv. Therefore, the
number of occurrences of any given bitstring s in opriv is, on
expectation, the sum of the expected amount of that bitstring
due to a bitstrings in D times the number of times these bit-
strings (denoted δ) occurred in D, as in Equation 5.10. Thus,
we have that E[opriv] is simply the result of multiplying M
with oD, as in Equation 5.11.

E[#[s]Dpriv] =
2t−1

∑
δ=0

E[#[s]]δ ·#[δ]D (5.10)

E[opriv] = M ·oD (5.11)

For the public to verify statistics using values in opriv ob-
tained from Dpriv, the aim is to reverse this process and infer
the counts in oD. Alongside Dpriv, M can also be safely re-
leased as it does not contain any private information. Com-
puting its inverse M−1, we can therefore estimate oD by mul-
tiplying opriv with M−1, as in Equation 5.12.3

oD ≈M−1 ·opriv (5.12)

Based on the inferred value of oD, the support and confi-
dence measures for any element sets ε, ε′ can then be com-
puted in the usual way. This allows statistics to be accurately
verified, as we show in the evaluation of our implementation
in Section 8.

Dpriv is used only for verification of the reported statistics,
leaving plenty of room for minimizing its information content.
If D is composed of records with a large number of elements,
but only a few of these have interesting relations that are
relevant in the published statistics, then only these need to
be included in Dpriv. This can significantly reduce the size of
Dpriv compared to D.

Our technique can in certain cases support statistics involv-
ing continuous variables. During the rule mining phase, the
researcher may need to examine the exact values (e.g., blood
pressure) but once a relevant threshold is identified, all the
values can be expressed as larger or smaller than that thresh-
old (e.g., blood pressure over 140/90mmHg). This practice
is common in machine learning algorithms e.g., C4.5 (an ex-
tension of ID3 [48]) builds decision trees from sets of data
samples containing both continuous and discrete attributes.
Alternatively, continuous variables can be split into multiple
binary elements.

3If M is not invertible, it can be made invertible with a change that would
not significantly affect the results.

9

Figure 3: The three stages in the operation of VAMS. Red,
blue and green boxes indicate information available to au-
ditors, users, and the public. Similarly, red, blue and green
arrows indicate operations that require being an auditor, a
user, or anybody.

6 Operating VAMS

VAMS involves three stages that are illustrated in Figure 3:
appending requests to the log, querying the log for audits, and
publishing and verifying audits. In this section, we describe
each stage and argue that VAMS achieves its transparency
and privacy goals.

6.1 Appending to the log

As part of request, agents append requests to the log as values
tied to the relevant common identifiers. If the value is tem-
porarily sensitive then a cryptographic commitment can be
used to ensure that correct logging can be verified after the
fact.

Our transparency goals require that the requests be au-
ditable by the parties they pertain to i.e., users performing
check and auditors performing audit, without relying on other
parties. Our privacy goals also require that the private contents
of the requests are not visible to any other parties, and that
information cannot be inferred about the requests by linking
them with other requests, users, agents, or data providers. This
is assured by encrypting the log entries so that only auditors
and relevant users can decrypt them, and using unlinkable
common identifiers.

Once a request is appended to the log it can be answered by
a data provider. A user acting as a data provider that is relying
on a data broker to answer requests for their data could check
if the data broker was misrepresenting their preferences by
checking access’ to their data themselves, or simply receiving
notifications for the requests appended to the log that the data
broker accepts.

6.2 Querying the log

Once requests are logged, users and auditors can verify that
the log servers are not malicious by performing detect, then
perform audit and check as required. Both users and auditors
can assure themselves that the information obtained from the
log is correct due to the availability and integrity properties
of the log, and audit the entries of the log. Auditors perform
their task over the entire log, or a subset of the log. Users
look only for specific requests by iterating over their common
identifiers until no request is found to determine the possible
requests relevant to them.

Users that do not wish to take on this task can choose to
outsource it to a data broker. A downside of this is that the
data broker must then be trusted with the private identifiers
tied to requests that the user positively answers. No other trust
is required as VAMS allows users to check the activity of
their broker, which can be logged and audited under the same
guarantees as other log entries.

6.3 Publishing and verifying audits

Auditors perform publish to release the statistics computed as
a result of their audit. Examples of what might be published
are the statistics provided by the IPCO in its annual report [35]
(e.g., the number of urgent requests) or the results of a medical
study (e.g., the association of some attribute with a disease).

Our transparency goals require that these statistics be verifi-
able, but for operational and privacy reasons the original data
used to compute statistics cannot be published. Instead, the
synthetic dataset Dpriv generated by MultiBallot (or its hash)
can be published on the log and used to verify the statistics by
users performing monitor, as we have shown in Section 5.3.
Users whose data was used to compute the statistics can verify
the inclusion of their data in Dpriv as part of monitor.

Assuming all users will take on the burden of verifying
statistics is unrealistic, but the system does not require them
to do so. Users that wish to check for access to their data can
do so regardless of others. They can also verify published
statistics even if their data was not used in the computation.
Verifying the integrity of a dataset benefits from more users
doing so, but a limited amount of users doing so will already
be beneficial. Others could rely on data brokers, which would
be acting in a way similar to organisations that currently
perform Freedom of Information requests.

7 Achieving Transparency And Privacy Goals

7.1 Goal T 1: log availability

We have assumed that agents and data providers do not col-
lude so requests will be logged so availability only requires
online log servers. The remaining threat is then a malicious

10

log server that equivocates, in which case users and auditors
could perform detect as follows.

In the HLF case, equivocation would result in a fork of the
blockchain. Both the main chain and the forked chain would
be visible, so equivocation can be detected.

In the Trillian case, a log server that equivocates would have
to produce signed tree heads and Merkle consistency proofs
for the alternative Merkle trees. Different Merkle consistency
proofs leading from the same Merkle tree generate different
views of the log, but these differing logs can no longer accept
the same Merkle consistency proofs to extend the logs because
the leaves are different. As tree heads are signed by the log
server, two inconsistent tree heads can be used as evidence to
implicate the log server [10, 16].

7.2 Goal T 2: log integrity
This argument is based on the fact that updates to the key-
value store are recorded on an append-only blockchain (for
HLF) or a verifiable log (for Trillian), resulting in VAMS’s
log being tamper-evident.

(HLF case) We rely on the underlying blockchain that
records state updates. Auditors can use the key history func-
tion to obtain the state updates that have modified the value
of a key. If they do not trust the integrity of that function (the
code for which is public), they can replay the blockchain’s
transactions to detect a party’s misbehaviour as they will have
signed the relevant transactions.

(Trillian case) We rely on the underlying verifiable log
i.e., the Merkle tree and the Merkle consistency proofs that
give the append-only property of the tree. If a malicious party
has tried to tamper with requests, they will have to update a
request value, which will appear in the append-only log. If the
log server produces a new tree head for a tree that modifies
requests in the tree associated with the previous tree head, it
will be evident as there cannot be a Merkle consistency proof
between the two trees. Similarly, if a leaf of an existing tree
is removed, the Merkle root of the tree will no longer match
the leaves.

Auditors can then perform audit by querying the state of
the ledger or log-backed map containing the requests (which
are encrypted under their public keys) and performing their
analysis. Requests that cannot be decrypted can be classed
as invalid and reported. The same argument can be used for
users performing check.

7.3 Goal T 3: verifiability of inputs to audits
In the case of a user performing monitor, we again have that
the user has a correct and complete view of the log by follow-
ing through the arguments previously presented. A malicious
auditor could nonetheless perform publish maliciously, pub-
lishing incorrect statistics or the wrong dataset, but this would
be detected by a user performing monitor. A user that was

included in the used dataset D used can check the integrity of
the transformed dataset Dpriv, identifying their shares using
the share identifier derived from their common identifiers and
checking that they reconstruct their original record.

7.4 Goal T 4: verifiability of published audits

Using Dpriv, any user can compute the same statistics that
are contained in the published audits in the way that was
described in Section 5.3. If the results are acceptably close
then they can conclude that the statistics computed on D were
correctly computed.

7.5 Goal T 5: transparency of the system

All the information that auditors require is by definition the
information that is logged, which they can access with ac-
cess only to VAMS, and without interaction with any other
party. For users, the information relevant to themselves will
be accessible by finding and decrypting the records relevant
to them, which does not require the help of any other party,
and audits must be made available by the auditors, but a hash
of Dpriv on the log can assert the integrity of Dpriv. Verifying
the statistics from Dpriv and the inclusion of their data does
not require any interaction either.

7.6 Goal P1: The log itself does not reveal any
sensitive information

The values of the log entries are encrypted so that no party
can gain any information from these unless they have the
decryption key controlled by either a relevant auditor or user.
Identifying related log entries could reveal sensitive informa-
tion but log entries are unlinkable. It is not possible to link
either common identifiers (outputs of a hash function such
as SHA-256) or the values of log entries (outputs of a secure
encryption scheme) together.

7.7 Goal P2: verifying an audit is privacy pre-
serving

Verifying an audit involves verifying known inputs (i.e., pri-
vately known records in D) and the public outputs (i.e., statis-
tics computed on records that are released). Verifying the
inputs only involves checking that known shares in Dpriv re-
construct a known record in D. No privacy loss can occur
by doing this because the record is, by assumption, already
known. We, therefore, focus on arguing that the access to
Dpriv, which is necessary to verify the statistics, does not
lead to a greater privacy loss than the release of the statistics
themselves.

The privacy risk associated with the release of Dpriv comes
in three forms.

11

First, the share identifiers used by users to verify the inputs
to the statistics could reveal links between the shares, or the
common identifiers used as their inputs. For this, we rely
again on the security of the hash function used to generate the
share identifiers. Taking SHA-256 as providing sufficiently
random outputs, it will not reveal links between the shares, and
taking it as pre-image resistant it will not reveal the common
identifiers used as input.

Second, Dpriv itself may leak sensitive information, allow-
ing a record to be reconstructed or allowing the presence of
a record to be inferred more than already possible from the
publicly released statistics.

Third, Dpriv could be used to compute not only the statistics
released through the published audit but also other statistics
that were not intended to be released.

To verify univariate statistics, Dpriv needs only to contain
single element shares so Dpriv can only be used to compute
univariate statistics. Moreover, if some elements of the records
in D were considered too sensitive to publish statistics about,
they can simply be excluded from Dpriv without affecting
the ability of users to compute the statistics that were pub-
lished. This means that only the published statistics and their
inputs can be verified, so there is no risk of privacy loss from
allowing the statistics to be verified.

In the case of multivariate statistics, we rely on the fact
that generating Dpriv incurs only a small expected privacy
loss (Theorem 2) and that, given Dpriv, it is not possible to
reconstruct records on the log (Theorem 1). This ensures
that publishing Dpriv does not enable an adversary to infer
whether or not a certain log entry was in D and that given
some information about a record in D (i.e., some shares from
that record), the remaining shares cannot be identified using
Dpriv.

7.7.1 Bounds on ballot reconstruction attacks

Theorem 1. The probability that an adversary who knows
α ∈ [1,2k] shares of a ballot can reconstruct the entire ballot

is Pr(Reconstruct)) = (1−Pr(Valid)e)(
(2k+1)r−α

2k+1−α
)−1.

Proof. Each element of a share can take the form of a single
i.e., 42 or 24, or a double i.e., 44 or 22. Initially, we re-
strict ourselves to ballots of one element, so a share simply
corresponds to an element. Given a ballot of n = 2k+1 ele-
ments, it must contain s ∈ [1,k+1] singles that correspond to
the record, and thus s−1 copies of the other single. The rest
of the elements are filled up using an equal amount of each
double i.e., k+ 1− s of each. The number of permutations,
denoted P(s), of a ballot with s singles corresponding to the
record using the standard formula for multiset permutations,
which takes into account repeated elements in a ballot, is
given in Equation 7.1.

P(s) =
(2k+1)!

s!(s−1)!(k+1− s)!(k+1− s)!
(7.1)

To compute the total number of possible ballots B, given
in Equation 7.2, we just sum over s to add up ballots cor-
responding to each number of singles matching the record
and multiply by a factor 2 as ballots are symmetric under an
interchange of singles.

B = 2
k+1

∑
s=1

P(s) (7.2)

This result can be used to compute the probability distri-
bution of the shares by counting their appearances in the
(2k+1)B shares that make up all the possible ballots. This
amounts to taking, for each element, the sum of permutations
of a ballot weighted by the number of appearances of that
share in the ballot, and taking into account the fact that dou-
bles appear the same amount of times in ballots corresponding
to either record, and singles appear either s or s−1 times de-
pending on whether they match the record. We denote the
number of 42, 24, 44 or 22 shares by S42, S24, S44 or
S22, which are given in Equations 7.3 and 7.4. The proba-
bility of each share, given in Equations 7.5 and 7.6, is then
obtained by dividing the number of shares for each form by
the total number of shares.

S42 = S24 =
k+1

∑
s=1

(2s−1)P(s) (7.3)

S44 = S22 = 2
k+1

∑
s=1

(k+1− s)P(s) (7.4)

Pr(42) = Pr(24) =
S42

(2k+1)B
(7.5)

Pr(44) = Pr(22) =
S44

(2k+1)B
(7.6)

With the probability distribution obtained we can obtain
the probability Pr(Valid), given in Equation 7.7, of the event
V that occurs when randomly chosen shares form a valid
ballot, by summing over the possible ballots weighted by
the probability of each share. More generally, when shares
involve e elements the probability is Pr(Valid)e.

Pr(Valid) = 2
k+1

∑
s=1

P(s)Pr(42)s Pr(24)s−1·

Pr(44)k+1−s Pr(22)k+1−s

(7.7)

The above is the probability of success for a weak adver-
sary that starts with no prior knowledge and wants only to
reconstruct a ballot, regardless of whether it belongs to some-
one. An adversary that knows up to α ∈ [1,2k] shares of a
ballot and wishes to figure out the last shares required to re-
construct that ballot chooses 2k+1−α other shares from the
dataset, giving

((2k+1)r−α

2k+1−α

)
possibilities, where r is the number

of records from which we subtract 1 as there must be at least

12

Table 3: Upper bounds on the number of elements in 3Ballot
and 5Ballot shares such that the probability of a successful
reconstruction is less than 0.01%. The numbers in brackets
next to the scheme indicate the number of shares known to
the adversary and the numbers in brackets next to the number
of elements indicate the probability of success.

Scheme 10 users 100 users 1000 users 10 000 users

3Ballot (1) 3 (3 ·10−5) 6 (5 ·10−13) 10 (6 ·10−10) 14 (1 ·10−7)
3Ballot (2) 1 (8 ·10−5) 2 (2 ·10−12) 4 (2 ·10−10) 6 (5 ·10−9)
5Ballot (1) 6 (4 ·10−6) 11 (5 ·10−20) 17 (3 ·10−12) 23 (2 ·10−13)
5Ballot (4) 1 (5 ·10−5) 2 (3 ·10−9) 3 (2 ·10−17) 5 (3 ·10−7)

one valid ballot. This gives Equation 7.8, which expresses the
probability of success Pr(Reconstruct) of that adversary.

Pr(Reconstruct)) = (1−Pr(Valid)e)(
(2k+1)r−α

2k+1−α
)−1 (7.8)

Table 3 gives an upper bound on elements that can be
included in shares while maintaining a probability of a re-
construction attack under 0.01 when an adversary knows one
share or all but one share. Different bounds can be chosen
depending on the acceptable probability of a reconstruction.
In practice, only a few elements may be relevant to the results
of an audit or study, and only those need to be published for
the relevant statistics to be publicly verifiable.

It is also important to note that we have modelled an at-
tacker who completes a partial ballot by picking random
shares in Dpriv. In reality, an attacker may of course have
better chances of reconstructing a ballot by inferring the re-
maining shares, particularly if they already know most of the
ballot’s shares, but this is done regardless of the availability
of Dpriv.

Finally, we have assumed statistical independence between
elements, which may not always be true. ThreeBallot with
correlated ballots was studied by Strauss [51] who showed
that even heavily correlated elements had only a minor effect
on the security of the scheme.

7.7.2 Bounds on the expected privacy loss from member-
ship of Dpriv

To quantify the loss of privacy from membership of D and,
therefore, the published Dpriv, we consider the privacy loss
variable Lθ

M(D),M(D′), defined in Equation 7.9. This variable
quantifies the privacy loss incurred by observing an output
θ of the mechanism M, based on how much more (or less)
likely that output is when M takes D as input rather than D′.

Lθ

M(D),M(D′) = ln
(

Pr[M (D) = θ]

Pr[M (D′) = θ]

)
(7.9)

If M satisfied the definition of differential privacy, this
would be equivalent to saying that the privacy loss variable
would be bounded [20]. MultiBallot, however, cannot satisfy
differential privacy because the share counts (which would
define Dpriv) that result from running M on D or D′ cannot
ever match unless D = D′. This is because the share counts
of ballots generated from different elements cannot be equal.

We, therefore, define in Definition 1 a relaxed alternative
to differential privacy, replacing the distribution over outputs
with an expected output. As we will show in Theorem 2, Multi-
Ballot satisfies this definition such that given two datasets of
the same size, D and D′, differing in one entry, the expected
outputs of Mn running on either database remain close.

Definition 1 (ζ-expected privacy loss). A randomised algo-
rithm M with domain N|χ| has a bounded expected privacy
loss if given two input databases D, D′ ∈ N|χ| where D and
D′ differ only in one element, there exists ζ ∈ R such that

ζ≥ ln
(
E[M(D)]

E[M(D′)]

)
. (7.10)

As in the case of differential privacy, ζ-expected privacy
loss also provides group privacy.

Lemma 1 (Bounded expected group privacy loss). Let D and
D′ be two databases that differ in e elements. If a randomised
algorithm M satisfies bounded expected privacy loss, then we
have that

eζ≥ ln
(
E[M(D)]

E[M(D′)]

)
. (7.11)

Proof. Iterating over Definition 1, if M has bounded expected
privacy loss then the expected privacy loss due to any single
element on the output of M is bounded by ζ. Thus, the impact
of any e elements is bounded by eζ.

We now prove in Theorem 2 that Multiballot satisfies this
definition and compute values of zeta for different database
sizes (|D| = 10,100,1000,10000) and schemes (3Ballot,
5Ballot).

Theorem 2. The MultiBallot share generation mechanism
Mn : D 7→ Dpriv satisfies ζ-expected privacy loss with ζ =

ln
(

|42|Dpriv

|42|Dpriv
−∑

k+1
s=1 Pr(s·42)

)∣∣
r42=0,r24=r

.

Proof. Consider two databases D and D′ that contain r single
element records and differ in one record. Without loss of
generality, we take D to contain rD

42 records of the form 42
and rD

24 records of the form 24 and D′ to contain rD′
42 =

rD
42−1 records of the form 42 and rD′

24 = rD
24+1 records

of the form 24.
Our aim is to determine and compare the share counts in

Dpriv←Mn(D) and D′priv←Mn(D′). Counting the different

13

shares in Dpriv amounts to considering the probability that
the ballot generated from a record will have s shares of one
form. This is given by the number of ballot permutations for
a given s over all possible ballots for that record, as expressed
in Equation 7.12. Summing over s gives the expected count
for each share of ballots generated from a record, which we
denote |share|record . (The same analysis holds for D′priv.)

Pr(s · (share = record)) =
2
B

P(S) (7.12)

|24|24 = |42|42 = rD
42

k+1

∑
s=1

Pr(s ·42)s (7.13)

|42|24 = |24|42 = rD
42

k+1

∑
s=1

Pr(s ·42)(s−1) (7.14)

|44|24 = |44|42 = rD
42

k

∑
s=1

Pr(s ·42)(k+1− s) (7.15)

|44|24 = |22|42 = rD
42

k

∑
s=1

Pr(s ·42)(k+1− s) (7.16)

Adding the contributions from all the records together gives
the total expected share count for each type of share in Dpriv.

|42|Dpriv
= rD

42

k+1

∑
s=1

Pr(s ·42)s

+ rD
24

k+1

∑
s=1

Pr(s ·24)(s−1)

(7.17)

|24|Dpriv
= rD

42

k+1

∑
s=1

Pr(s ·42)(s−1)

+ rD
24

k+1

∑
s=1

Pr(s ·24)s

(7.18)

|22|Dpriv
= |44|= rD

42

k

∑
s=1

Pr(s ·42)(k+1− s)

+ rD
24

k

∑
s=1

Pr(s ·24)(k+1− s)

(7.19)

We obtain a similar result for D′priv using the fact that rD′ =

rD′
42−1.

|42|D′priv
=
(
rD
42−1

) k+1

∑
s=1

s ·Pr(s ·42)+

(
rD
24+1

) k+1

∑
s=1

(s−1) ·Pr(s ·24)

= |42|Dpriv
−(

k+1

∑
s=1

s ·Pr(s ·42)−
k+1

∑
s=1

(s−1) ·Pr(s ·24)

)

= |42|Dpriv
−

k+1

∑
s=1

Pr(s ·42)

(7.20)

|24|D′priv
= |24|Dpriv

+
k+1

∑
s=1

Pr(s ·24) (7.21)

|22|D′priv
= |22|Dpriv (7.22)

|44|D′priv
= |44|Dpriv (7.23)

Given the expected share counts in Dpriv and D′priv that we
have derived, we can now compare them to obtain a bound ζ

on the expected privacy loss.

ζ = max
s∈shares

ln

(
|s|Dpriv

|s|D′priv

)

=maxln

(
|42|Dpriv

|42|D′priv

)

=maxln

(
|42|Dpriv

|42|Dpriv
−∑

k+1
s=1 Pr(s ·42)

)

= ln

(
|42|Dpriv

|42|Dpriv
−∑

k+1
s=1 Pr(s ·42)

)
∣∣

r42=0,r24=r

(7.24)

The final result from Equation 7.24 can be easily computed
and is given for different values of |D| in Table 4.

8 Implementation and Performance

We evaluate VAMS by comparing two implementations of
the log based on HLF and Trillian (the code for which will
be open-sourced after publication) and showing that statistics
can be accurately verified with MultiBallot. Both log imple-
mentations are evaluated on very modest (and cheap) Amazon
AWS t2.medium instances.4

4Each instance has 2 vCPUs and 4GB of memory and is running Ubuntu
Linux 16.04 LTS with Go 1.7, docker-ce 17.06, docker-compose 1.18, and
Fabric 1.06 installed

14

Table 4: Values for the expected privacy loss parameters ζ

and eζ for different sizes of D. We take values of e equal to
the safe number of elements against reconstruction attacks
taken from Table 3.

Scheme |D| ζ exp(ζ) eζ exp(eζ)

3Ballot 10 0.36 1.43 1.08 (e = 3) 2.95
3Ballot 100 0.03 1.03 0.18 (e = 6) 1.2
3Ballot 1000 0.003 1.003 0.03 (e = 10) 1.03
3Ballot 10,000 0.0003 1.0003 0.0042(e = 14) 1.0042

5Ballot 10 0.1335 1.143 0.801(e = 6) 2.23
5Ballot 100 0.0126 1.0127 0.1386 (e = 11) 1.149
5Ballot 1000 0.00125 1.00125 0.02125 (e = 17) 1.0215
5Ballot 10,000 0.000125 1.000125 0.002875 (e = 23) 1.0029

Figure 4: The HLF-based implementation.

8.1 Evaluating Hyperledger Fabric and Tril-
lian based logs

Hyperledger Fabric implementation For our HLF-based
log, we set up a test network of seven machines that represent
four peers (an agent, a data provider, a user, and an auditor), an
ordering service (an Apache Zookeeper service and a Kafka
broker), and a client from which commands are sent. Log en-
tries can be retrieved by querying specific common identifiers,
and a key history function is also available to retrieve the state
updates (i.e., transactions on the underlying blockchain) of a
log entry. The execution of commands on the HLF network is
summarized in Figure 4.

In this implementation, all peers are connected to one chan-
nel and there is one chaincode containing four functions that
update the state of the ledger (as part of request), retrieve
a range of key values (as part of audit), retrieve values for
specific keys (as part of check) and retrieve a key’s history (as
part of audit and check).

Thus, auditors or users can check the transactions that up-
dated the value of a key and easily determine the agent respon-
sible for the update, as they will have endorsed (i.e., signed)
the transaction. Endorsement policies can require multiple
signatures so they could hold multiple parties accountable e.g.,

Figure 5: The Trillian-based implementation.

if data providers were considered responsible for accepting
invalid requests, they could be required to sign the correspond-
ing request transactions. An ordering service of specific peers
(e.g., auditors) could also be used to detect and flag invalid
requests as they are initially processed (and endorsement poli-
cies are checked) before committing the requests. These are
not present in our implementation, but give an idea of what im-
provements may be possible as Hyperledger Fabric undergoes
continued development and implements further cryptographic
tools.

Trillian implementation Our second implementation of
the log, illustrated in Figure 5, is based on Trillian’s verifiable
log-backed map. The map server (VAMS’s log) monitors the
log of updates for new entries and updates the map according
to the new entries – common identifiers are used as the map’s
keys. It then periodically publishes signed map heads on the
second verifiable log, solely responsible for keeping track of
published signed map heads.

To perform check, users can query the map to efficiently
check their possible common identifier values. The map will
return a Merkle proof of non-inclusion for common identifiers
that do not map to requests (i.e. the common identifier maps
to 0), or a Merkle proof of inclusion for requests that the
common identifiers do map to. Auditors performing audit can
in turn check that the map is operated correctly by replaying
all log entries, verifying that they correspond to the map heads
on the second verifiable log.

Performance Table 5 presents benchmarks for state up-
dates, state retrievals, and the maximal throughput for each
system with a batch size of one. In both cases, the average
for each operation is a few dozen milliseconds. For the HLF
system, the results include the time required to create and
submit 500 blocks; chaincode execution alone is under 10ms.
For state retrievals, HLF allows values to be retrieved for a
range of keys. This operation scales linearly with the number
of values retrieved and only requires one transaction.

Table 5 also includes the maximal throughput, which is 40
requests per second for the HLF system and 102 requests per
second for the Trillian system. Figure 6 shows the throughput

15

Table 5: Micro-benchmarks of basic operations for the Hy-
perledger Fabric and Trillian based implementations. The
maximal throughput values are given for a batch size of 1 in
the HLF case and a batch size of 300 in the Trillian case.

Measures HLF Trillian

State update (average over 500 operations) 65ms 35ms
Request retrieval (average over 500 operations) 66ms 14ms
Max throughput 40 102

0 50 100 150 200 250 300 350
Batch size

30

40

50

60

70

80

90

100

110

Th
ro

ug
hp

ut
 (r

eq
ue

st
s/

se
co

nd
)

Trillian
HLF

Figure 6: Throughput of both logs for different batch sizes.

for different batch sizes. For the HLF-based log, the highest
throughput is observed for smaller batch sizes. The bottleneck
is simply the client sending requests. For the Trillian-based
log, the batch size determines how many items at a time the
map servers retrieve from the log to update the map’s key
values, until around batch size 300. The bottleneck is then the
number of keys updated by the map server per second, and
throughput levels out.

A greater throughput can be achieved with a larger batch
size but having requests appear on the log sooner can be
advantageous e.g., in the case of urgent requests. In that case,
a lower batch size is preferable, or a batch time-out that would
ensure a request will appear after a time limit if the batch size
limit is not reached.

Practically speaking, for example in the case of law en-
forcement access to communications data, the IPCO reports
about 800000 requests for communication data per year in
the UK [35] or about 1 request every 9 seconds assuming that
requests happen during work hours. (There are no equivalent
publicly available statistics for other settings.)

A HLF-based log capable of 40 requests per second, placed
at the interface for law enforcement (standardized by ETSI TS
103 307 [21]) would be more than sufficient, with an average

Table 6: Summary of supported (full circles) and partially
supported (half-circles) features of the HLF and Trillian based
logs.

Features HLF Trillian

User privacy
Agent privacy G#
Data provider privacy G#
Statistical privacy
User auditability G#
External auditability
Verifiability
Access control G#

waiting time of 25 ms assuming Poisson-distributed requests.
For a Trillian-based system with 102 transactions per second,
the average waiting time would be 10 ms.

Trade-offs Trillian has a higher throughput as no consensus
is required among different nodes to agree on the ordering
of transactions, and better user auditability as when a user
queries the map server for an idc, the map server returns a
Merkle proof of the key and value being included in the map.
The key history function of HLF does not provide a cryp-
tographic proof, so replaying the entire blockchain can be
necessary to verify the inclusion of a key and value. Users
could however outsource this task to a data broker.

HLF supports flexible chaincode policies to determine
write access to the log and comes with built-in authentication
and PKI services. However, this means that users must submit
queries to audit the log using a pseudonymous identity. If they
used the same identity for multiple queries, their common
identifiers could be linked together. Authentication must be
done separately in Trillian.

The two systems also differ in their architecture. HLF is
decentralized (although it is permissioned) whereas Trillian
is centralized. A decentralized approach is appealing because
it reduces the trust required in single entities to maintain the
log. In practice, however, there is only one organization that
legitimately has reason to write records for a particular busi-
ness relationship. Users will mostly only have a single data
provider for a service, which may lend itself more towards
the centralized approach.

Table 6 summarizes the features of both implementations.
Ultimately, Trillian is easier to deploy and has less setup
than HLF, which requires the setup of a network of multiple
nodes to act as peers, and the maintenance of an identity
service to allow nodes to interact with the network. HLF and
other blockchain-based approaches may be preferable if an
organisation is already using the technology for some other
purpose.

16

8.2 Evaluating the verification of statistics with
Multiballot

The simplest case when verifying statistics is the univariate
case. In this case, the exact counts for each value of every ele-
ment are preserved, so statistics can be recomputed with 100%
accuracy. This means that for applications like the IPCO re-
port on law enforcement access to communications data [35],
every statistic could be verified using our scheme. We, there-
fore, focus on the more complicated case of univariate statis-
tics for the rest of this section.

Our evaluation measures the accuracy of the association
rule metrics computed on Dpriv. For our experiments, we gen-
erate multiple synthetic datasets that follow the structure of D
described in Section 6, with several frequent element sets [30].
We mine these for association rules using the Apriori algo-
rithm [3], identifying frequent elements in the dataset and
extending them to larger element sets for as long as the ele-
ment sets appear frequently enough in the dataset. We then
compute the support and confidence measures on Dpriv for
the previously extracted element sets, and compare those val-
ues with the reported values for the same element sets on D.
We use the percent error %Err, defined in Equation 8.1, to
measure the disparity between statistics computed on D (the
ground truth value, GV) and Dpriv (the measured value, MV).

%Err =
|MV −GV |
|GV |

·100 (8.1)

We opt to use synthetic datasets to evaluate MultiBallot, by
simulating scenarios with a known ground truth rather than
relying on sanitized public datasets for which the ground truth
is unknown. We also verify our results using commonly used
public datasets, such as the Extended Bakery dataset [14]
and the T10I4D100K dataset [24]. In all our experiments
(repeated 100 times) we measure the error for both the sup-
port and the confidence metrics. Because these are identical,
however, we only include the graphs for support here.

Our first experiment studies the percent error for the support
over two elements when varying the number of rule occur-
rences for a dataset of 1M records. Figure 7 shows the results
in the case of 3, 5, 7 and 9Ballot. Element sets that occur less
often are prone to higher percent error, with a high variance
in the reported support values. This is expected for rules with
very low support as, for example, observing a rule twice in
Dpriv when it occurs only once in D gives a percent error
of 100% despite the practically meaningless difference. As
element sets become more frequent (up to around 11%), the
percent error (< 2%) and the variance both shrink. As the
difference in percent error between MultiBallot schemes also
shrinks we focus on the results for 3Ballot in the following
experiments.

Our second experiment studies whether the accuracy for
an element set depends on the number of times the element
set occurs, or its occurrences relative to the overall number of

0.004373 0.011927 0.112724
Support

0

100

200

300

400

500

Pe
rc

en
t E

rro
r

3Ballot
5Ballot
7Ballot
9Ballot

Figure 7: Percent error for the support over two elements as
rule occurrences vary in the case 3, 5, 7 and 9Ballot.

users i.e., support. We generate four datasets of size 1k, 10k,
100k, and 1M, and pick five element sets with support 0.1, 0.3,
0.5, 0.7, and 0.9, from each dataset. The percent error (shown
in Figure 8) shrinks as the support increases, but the absolute
size of the element set plays a bigger role in the accuracy of
the statistics. In the cases of the 100k and 1M user datasets,
the support has only a minimal effect on the accuracy. Our
results are consistent with those of Blum et al [7].

Our third experiment evaluates MultiBallot for different ele-
ment set sizes using a synthetic dataset of 100k users. Figure 9
shows that accuracy is sensitive to increases in the number
of elements. This is expected as the scheme probabilistically
estimates the field values of the original record based on the
observed shares, and the inference error for each field adds
up with the number of elements.

Our results show that MultiBallot can provide publicly
verifiable statistics in the context of law-enforcement access
to telecommunications data i.e., the type of statistics published
by the IPCO [35].

To evaluate the applicability to healthcare data, we consider
two types of studies: studies on genes and protein networks,
and epidemiology studies. In studies on genes and protein
networks, datasets commonly contain between 100k and a few
million records, with a support threshold usually around 0.5%.
In most cases, valid association rules are composed of only
two elements and their support is greater than the minimum
threshold. (The minimum threshold is relevant only during
the rule-mining phase.) In the verification phase, the users
compute measures over the relationships that are reported by

17

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Support

0

5

10

15

20

Pe
rc

en
t E

rro
r

1k Records
10k Records
100k Records
1M Records

Figure 8: Percent error for elements that appear with varying
frequency in datasets with different number of users, using
3Ballot.

the researcher as strongly associated [23, 28, 37, 44].
In epidemiology studies, the average element set size is 3,

with a minimum support of around 1%. However, the sup-
port of relevant element sets identified is much higher and
ranges from 1% to 16%, and datasets contain between 10,000
and 250,000 records [36, 47, 54]. Our analysis of MultiBal-
lot shows that acceptable accuracy can be obtained for such
studies of healthcare data.

9 Deployability

For a system like VAMS to be deployed, agents and data
providers would need to implement the necessary infrastruc-
ture. They may do so as part of transparency initiatives to
increase public confidence [52]. As we have shown in the
benchmarks presented in Section 8, this may be cost-effective
as VAMS can achieve good enough performance on very
cheap hardware.

Parties may also implement VAMS to allow them to
demonstrate that data they submit as evidence in legal proceed-
ings has not been tampered with. Alternatively, they may have
a statutory obligation to provide transparency e.g., compli-
ance with ETSI requirements may be a condition of providing
a telecommunication service. Such standards do include pro-
visions for requiring that access to personal data is auditable
and that the authenticity of data can be established [21].

In the UK, the IPCO can require that public authorities
and telecommunication operators provide the commissioner’s
office with any assistance required to carry out audits, and
this could include implementing IT infrastructure [1, Sec-
tion 235(2)]. Another possible route for imposing a statutory
requirement to provide transparency could be through en-
forcement action of a regulator such as the Federal Trade

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Support

0

2

4

6

8

10

12

14

16

Pe
rc

en
t E

rro
r

2 elements
3 elements
4 elements
5 elements

Figure 9: Percent error for element sets of varying size that
have the same support, using 3Ballot.

Commission or a data protection authority. NGOs that cur-
rently work with transparency as an objective (e.g., make
Freedom of Information requests) could also have an interest
in maintaining and operating a system like VAMS by, for
example, hosting log servers and serving as data brokers or
auditors.

10 Related Work

For a systematisation of transparency enhancing technologies
based on cryptographic logs such as VAMS, see the work of
Hicks [32].

The work closest to ours is due to Frankle et al. [25], who
propose a system that allows accountability of secret legal pro-
cesses using zero-knowledge proofs and aggregate statistics
computed through a multi-party computation (MPC) between
courts. Previously, Goldwasser and Park [26] had also pro-
posed using append-only ledgers and zero-knowledge proofs
in the context of actions related to secret laws under the U.S.
Foreign Intelligence Surveillance Act (FISA).

This approach provides less transparency than ours as they
do not support individual transparency, only aggregate statis-
tics, thereby reducing the potential for users to contest out-
comes [31]. While the outputs of zero-knowledge proofs and
MPC can be checked for correctness, the integrity of inputs
(i.e. the integrity of the data used in audits) cannot be verified.
Because the inputs can be manipulated, they must assume that
judges (who are closest to the auditors of our context) are not
malicious and would not publish an inaccurate report, making
their threat model weaker than ours. Their proposed systems
are also specific to a targeted use case where all parties could
coordinate to perform the required multiparty computation,
while our approach is more generally applicable as parties

18

do not require as much coordination aside from the initial
request for data (which is unavoidable).

Work by Panwar et al. [46] also addresses the problem of
auditing surveillance orders, but differs from ours to a greater
extent as it envisions an enforcer that verifies the interactions
between agents and data providers, which are recorded on a
blockchain using zero-knowledge proofs, but does not support
verifiable statistics.

Tamper-evident logs have also been used in other work that
focuses on auditability. Bates et al. [6] look at accountable
logs of wiretapping in the context of equipment implement-
ing requirements of the US Communications Assistance for
Law Enforcement Act (CALEA). This system permits simple
counting queries, whereas VAMS allows broader analysis.
CONIKS [43] deals with the specific case of key transparency,
allowing users to monitor their key bindings, and does not
deal with other problems that we address, in particular public
audits.

In terms of privacy preserving statistics, techniques such
as k-anonymity [53], l-diversity [41], t-closeness [42] and
ρ-uncertainty [9] have been proposed. As discussed by
Domingo-Ferrer and Torra [15], however, these techniques
provide privacy only when the utility of the dataset is signifi-
cantly reduced, whereas our solution enables accurate statis-
tics.

Another line of work that attempts to address this limitation
is privacy-preserving association rule mining [2] (we intro-
duce association rule mining in Section 6). Such techniques
generate randomized or perturbed datasets that protect the
privacy of users while preserving some of the associations
between the variables that are of interest. Originally, privacy-
preserving association rule mining was performed through
uniform randomization of the dataset based on a public fac-
tor. As shown by Evfimievski et al. [22] this naive approach
does not protect the users’ privacy effectively. They instead
proposed randomization operators [22] that were also proven
ineffective and require an initial dataset of at least one million
records [56]. Zhang et al. proposed a scheme that considers
the existing association rules when perturbing the data and, as
a result, provides better privacy bounds [56]. Unfortunately,
this scheme has limited applicability as it severely distorts the
strength of the association rules, overestimating strong rela-
tionships and under-representing less frequent ones. Overall,
the weak privacy guarantees and the poor accuracy achieved
by those schemes make them unsuitable for a system like
VAMS.

A more promising line of work is based on differential
privacy [18]. Such schemes have been studied extensively in
the past years and have been proven to be secure in a variety of
settings [17]. However, they still impose trade-offs between
privacy and utility [4], as well as one-shot and continuous
observation [19]. Achieving a meaningful privacy parameter
can also be hard in practice [40], particularly when the aim
is to provide a general solution like ours. This problem is

tackled by Chen et al. [11], who take into consideration the
underlying dataset to provide stronger privacy guarantees and
increased utility.

None of these solutions provides verifiability, however, so
the public cannot easily verify the integrity of the published
data or statistics. In fact, the analyst who adjusts the noise term
may accidentally or intentionally sample from distributions
that drastically skew the statistics computed [45].

Narayan et al. [45] solve this problem with a scheme that
uses a subset of Fuzz [29] to generate publicly verifiable valid-
ity proofs. Unfortunately, VerDP has limited expressiveness
and severely constrains access to the dataset. More specif-
ically, once the privacy budget of a particular dataset gets
depleted, no further queries or analyses can be conducted.
This may exclude researchers from using the data and prevent
the application of novel analysis techniques on older, depleted
datasets. It could also allow a malicious party to intentionally
deplete the privacy budget. In comparison, we allow the data
to be used any number of times and without constraints.

11 Conclusion

We have proposed a system, VAMS, which achieves our trans-
parency and privacy goals. Our work shows how existing
transparency overlays used to provide tamper-evident log-
ging can be combined with our log entry tagging scheme
and MultiBallot to support publicly verifiable individual and
population level transparency about access to data requests.
Our evaluation of two implementations of VAMS shows that
the system also meets realistic performance requirements in
practice, and not only on paper.

Our results illustrate that the current framework for request-
ing data can be greatly improved to benefit all parties involved.
We have given two example use cases in Section 1 to illus-
trate how VAMS could be used. Its design does not depend
on any particularities of these use cases so it could therefore
be applied more generally. VAMS does not have to replace
any existing component in the workflow of an organization.
Instead, it serves as an overlay that can be used to achieve
both transparency and privacy goals.

Acknowledgments

The authors would like to thank Jonathan Bootle, Paul Dun-
phy, and Wai Yi Feng for helpful discussions and sugges-
tions. Alexander Hicks was supported by OneSpan5 and UCL
through an EPSRC Research Studentship, Vasilis Mavroudis
was supported by the European Commission through the
H2020-DS-2014-653497 PANORAMIX project, Mustafa Al-
Bassam was supported by a scholarship from The Alan Turing
Institute, Sarah Meiklejohn was supported in part by EPSRC
Grant EP/N028104/1 and in part by a Google Faculty Award,

5https://www.onespan.com/

19

https://www.onespan.com/

and Steven Murdoch was supported by The Royal Society
[grant number UF160505].

References

[1] Investigatory Powers Act, 2016.

[2] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami.
Mining association rules between sets of items in large
databases. In ACM SIGMOD Record, volume 22, pages
207–216. ACM, 1993.

[3] Rakesh Agrawal and Ramakrishnan Srikant. Fast algo-
rithms for mining association rules. Proc. of the 20th
VLDB Conference, pages 487–499, 1994.

[4] Mário S Alvim, Miguel E Andrés, Konstantinos
Chatzikokolakis, Pierpaolo Degano, and Catuscia
Palamidessi. Differential privacy: on the trade-off be-
tween utility and information leakage. In International
Workshop on Formal Aspects in Security and Trust,
pages 39–54. Springer, 2011.

[5] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin,
K. Christidis, A. De Caro, D. Enyeart, C. Fer-
ris, G. Laventman, Y. Manevich, S. Muralidharan,
C. Murthy, B. Nguyen, M. Sethi, G. Singh, K. Smith,
A. Sorniotti, C. Stathakopoulou, M. Vukolić, S. Weed
Cocco, and J. Yellick. Hyperledger Fabric: A Distributed
Operating System for Permissioned Blockchains. ArXiv
e-prints, January 2018.

[6] Adam Bates, Kevin RB Butler, Micah Sherr, Clay
Shields, Patrick Traynor, and Dan Wallach. Accountable
wiretapping–or–i know they can hear you now. Journal
of Computer Security, 23(2):167–195, 2015.

[7] Avrim Blum, Cynthia Dwork, Frank McSherry, and
Kobbi Nissim. Practical privacy: the sulq framework.
In Proceedings of the twenty-fourth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database
systems, pages 128–138. ACM, 2005.

[8] Christian Cachin. Architecture of the Hyperledger
blockchain fabric. In Workshop on Distributed Cryp-
tocurrencies and Consensus Ledgers, 2016.

[9] Jianneng Cao, Panagiotis Karras, Chedy Raïssi, and
Kian-Lee Tan. ρ-uncertainty: inference-proof transac-
tion anonymization. Proceedings of the VLDB Endow-
ment, 3(1-2):1033–1044, 2010.

[10] Melissa Chase and Sarah Meiklejohn. Transparency
overlays and applications. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 168–179, 2016.

[11] Rui Chen, Noman Mohammed, Benjamin CM Fung,
Bipin C Desai, and Li Xiong. Publishing set-valued
data via differential privacy. Proceedings of the VLDB
Endowment, 4(11):1087–1098, 2011.

[12] Scott A Crosby and Dan S Wallach. Efficient data struc-
tures for tamper-evident logging. In USENIX Security
Symposium, pages 317–334, 2009.

[13] Özgür Dagdelen. The cryptographic security of the
German electronic identity card. PhD thesis, Technische
Universität Darmstadt, 2013.

[14] A Dekhtyar and J Verburg. Extended bak-
ery dataset. https://wiki.csc.calpoly.edu/
datasets/wiki/ExtendedBakery, 2009.

[15] Josep Domingo-Ferrer and Vicenç Torra. A critique of k-
anonymity and some of its enhancements. In Availability,
Reliability and Security, 2008. ARES 08. Third Interna-
tional Conference on, pages 990–993. IEEE, 2008.

[16] Benjamin Dowling, Felix Günther, Udyani Herath, and
Douglas Stebila. Secure logging schemes and certificate
transparency. In European Symposium on Research in
Computer Security, pages 140–158. Springer, 2016.

[17] Cynthia Dwork. Differential privacy: A survey of results.
In International Conference on Theory and Applications
of Models of Computation, pages 1–19. Springer, 2008.

[18] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and
Adam Smith. Calibrating Noise to Sensitivity in Pri-
vate Data Analysis, pages 265–284. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2006.

[19] Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N
Rothblum. Differential privacy under continual obser-
vation. In Proceedings of the forty-second ACM sym-
posium on Theory of computing, pages 715–724. ACM,
2010.

[20] Cynthia Dwork, Aaron Roth, et al. The algorithmic
foundations of differential privacy. Foundations and
Trends® in Theoretical Computer Science, 9(3–4):211–
407, 2014.

[21] ETSI. TS 103 307: Security aspects for LI and RD
interfaces, 2018. V1.3.1.

[22] Alexandre Evfimievski, Ramakrishnan Srikant, Rakesh
Agrawal, and Johannes Gehrke. Privacy preserving min-
ing of association rules. Information Systems, 29(4):343–
364, 2004.

[23] Daniel Faria, Andreas Schlicker, Catia Pesquita, Hugo
Bastos, António EN Ferreira, Mario Albrecht, and An-
dré O Falcão. Mining go annotations for improving
annotation consistency. PloS one, 7(7):e40519, 2012.

20

https://wiki.csc.calpoly.edu/datasets/wiki/ExtendedBakery
https://wiki.csc.calpoly.edu/datasets/wiki/ExtendedBakery

[24] Frederic Flouvat, F De March, and Jean-Marc Petit. A
thorough experimental study of datasets for frequent
itemsets. In Data Mining, Fifth IEEE International
Conference on. IEEE, 2005.

[25] Jonathan Frankle, Sunoo Park, Daniel Shaar, Shafi Gold-
wasser, and Daniel J. Weitzner. Practical accountability
of secret processes. Cryptology ePrint Archive, Report
2018/697, 2018. https://eprint.iacr.org/2018/
697.

[26] Shafi Goldwasser and Sunoo Park. Public accountabil-
ity vs. secret laws: Can they coexist?: A cryptographic
proposal. In Proceedings of the 2017 on Workshop on
Privacy in the Electronic Society, pages 99–110. ACM,
2017.

[27] Google. Trillian, 2017.

[28] Pietro Hiram Guzzi, Marianna Milano, and Mario Can-
nataro. Mining association rules from gene ontology and
protein networks: Promises and challenges. Procedia
Computer Science, 29:1970–1980, 2014.

[29] Andreas Haeberlen, Benjamin C. Pierce, and Arjun
Narayan. Differential privacy under fire. In 20th
USENIX Security Symposium, San Francisco, CA, USA,
August 8-12, 2011, Proceedings, 2011.

[30] J. Heaton. Comparing dataset characteristics that favor
the apriori, eclat or fp-growth frequent itemset mining
algorithms. In SoutheastCon 2016, pages 1–7, March
2016.

[31] Alexander Hicks. Transparency, compliance, and con-
testability when code is(n’t) law. arXiv preprint
arXiv:2205.03925, 2022.

[32] Alexander Hicks. SoK: Log based transparency en-
hancing technologies. arXiv preprint arXiv:2305.01378,
2023.

[33] Home Office. Operational case for the use
of communications data by public authorities.
https://www.gov.uk/government/publications/
investigatory-powers-bill-overarching-documents,
2016.

[34] Interception of Communications Commissioner’s Office.
Report of the interception of communications commis-
sioner - annual report for 2016, December 2017.

[35] Investigatory Powers Commitioner’s Office. Annual
report of the investigatory powers commissioner 2017,
January 2019.

[36] Peter B Jensen, Lars J Jensen, and Søren Brunak. Min-
ing electronic health records: towards better research

applications and clinical care. Nature Reviews Genetics,
13(6):395, 2012.

[37] Anand Kumar, Barry Smith, and Christian Borgelt. De-
pendence relationships between gene ontology terms
based on tigr gene product annotations. In Proceedings
of CompuTerm 2004: 3rd International Workshop on
Computational Terminology, 2004.

[38] Ben Laurie and Emilia Kasper. Revocation transparency.
Google Research, September, 2012.

[39] Ben Laurie, Adam Langley, and Emilia Kasper. Rfc
6962 – Certificate transparency. Technical report, 2013.

[40] Jaewoo Lee and Chris Clifton. How much is enough?
choosing ε for differential privacy. In International
Conference on Information Security, pages 325–340.
Springer, 2011.

[41] Ninghui Li, Tiancheng Li, and Suresh Venkatasubra-
manian. t-closeness: Privacy beyond k-anonymity and
l-diversity. In Data Engineering, 2007. ICDE 2007.
IEEE 23rd International Conference on, pages 106–115.
IEEE, 2007.

[42] Ashwin Machanavajjhala, Johannes Gehrke, Daniel
Kifer, and Muthuramakrishnan Venkitasubramaniam. l-
diversity: Privacy beyond k-anonymity. In Data En-
gineering, 2006. ICDE’06. Proceedings of the 22nd
International Conference on. IEEE, 2006.

[43] Marcela S Melara, Aaron Blankstein, Joseph Bonneau,
Edward W Felten, and Michael J Freedman. Coniks:
Bringing key transparency to end users. In USENIX Se-
curity Symposium, volume 2015, pages 383–398, 2015.

[44] Anurag Nagar, Michael Hahsler, and Hisham Al-
Mubaid. Association rule mining of gene ontology
annotation terms for sgd. In Computational Intelligence
in Bioinformatics and Computational Biology (CIBCB),
2015 IEEE Conference on, pages 1–7. IEEE, 2015.

[45] Arjun Narayan, Ariel Feldman, Antonis Papadimitriou,
and Andreas Haeberlen. Verifiable differential privacy.
In Proceedings of the Tenth European Conference on
Computer Systems, page 28. ACM, 2015.

[46] Gaurav Panwar, Roopa Vishwanathan, Satyajayant
Misra, and Austin Bos. Sampl: Scalable auditability of
monitoring processes using public ledgers. In Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, pages 2249–2266, 2019.

[47] So Hyun Park, Shin Yi Jang, Ho Kim, and Seung Wook
Lee. An association rule mining-based framework
for understanding lifestyle risk behaviors. PloS one,
9(2):e88859, 2014.

21

https://eprint.iacr.org/2018/697
https://eprint.iacr.org/2018/697
https://www.gov.uk/government/publications/investigatory-powers-bill-overarching-documents
https://www.gov.uk/government/publications/investigatory-powers-bill-overarching-documents

[48] J. Ross Quinlan. Induction of decision trees. Machine
learning, 1(1):81–106, 1986.

[49] Ronald L Rivest. The ThreeBallot voting system. 2006.

[50] Ronald L Rivest and Warren D Smith. Three
voting protocols: ThreeBallot, VAV, and Twin.
USENIX/ACCURATE Electronic Voting Technology
(EVT 2007), 2007.

[51] Charlie EM Strauss. A critical review of
the triple ballot voting system, part 2: Crack-
ing the triple ballot encryption. Unpublished
draft, http://cems.browndogs.org/pub/
voting/tripletrouble.pdf, 74, 2006.

[52] Mustafa Suleyman and Ben Laurie. Trust, confidence
and verifiable data audit, 2017.

[53] Latanya Sweeney. k-anonymity: A model for protecting
privacy. International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems, 10(05):557–570, 2002.

[54] Giulia Toti, Ricardo Vilalta, Peggy Lindner, Barry Lefer,
Charles Macias, and Daniel Price. Analysis of correla-
tion between pediatric asthma exacerbation and expo-
sure to pollutant mixtures with association rule mining.
Artificial intelligence in medicine, 74:44–52, 2016.

[55] Marko Vukolić. Rethinking permissioned blockchains.
In Proceedings of the ACM Workshop on Blockchain,
Cryptocurrencies and Contracts, pages 3–7. ACM,
2017.

[56] Nan Zhang, Shengquan Wang, and Wei Zhao. A new
scheme on privacy preserving association rule mining.
In European Conference on Principles of Data Mining
and Knowledge Discovery, pages 484–495. Springer,
2004.

22

http://cems.browndogs.org/pub/voting/tripletrouble.pdf
http://cems.browndogs.org/pub/voting/tripletrouble.pdf

	Introduction
	Outline of the paper
	Motivating scenarios
	Law-enforcement access to communications data
	Access to healthcare records

	Threat model and Goals
	Threat Model
	Transparency goals
	Privacy goals

	Building VAMS
	Using Hyperledger Fabric and Trillian as tamper-evident logs
	Tagging log entries with common identifiers
	Generating synthetic data and verifying statistics with MultiBallot

	Operating VAMS
	Appending to the log
	Querying the log
	Publishing and verifying audits

	Achieving Transparency And Privacy Goals
	Goal T1: log availability
	Goal T2: log integrity
	Goal T3: verifiability of inputs to audits
	Goal T4: verifiability of published audits
	Goal T5: transparency of the system
	Goal P1: The log itself does not reveal any sensitive information
	Goal P2: verifying an audit is privacy preserving
	Bounds on ballot reconstruction attacks
	Bounds on the expected privacy loss from membership of Dpriv

	Implementation and Performance
	Evaluating Hyperledger Fabric and Trillian based logs
	Evaluating the verification of statistics with Multiballot

	Deployability
	Related Work
	Conclusion

